Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (36) Expression Attributions Wiki
XB-ANAT-3619

Papers associated with locus coeruleus

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Premotor Neuron Divergence Reflects Vocal Evolution., Barkan CL., J Neurosci. June 6, 2018; 38 (23): 5325-5337.              


Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis., López JM., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.


Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA., Front Neural Circuits. June 16, 2014; 8 55.          


α-Conotoxin PeIA[S9H,V10A,E14N] potently and selectively blocks α6β2β3 versus α6β4 nicotinic acetylcholine receptors., Hone AJ., Mol Pharmacol. November 1, 2012; 82 (5): 972-82.


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties., Belujon P., J Neurophysiol. October 1, 2009; 102 (4): 2312-25.


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Distribution and corticosteroid regulation of glucocorticoid receptor in the brain of Xenopus laevis., Yao M., J Comp Neurol. June 20, 2008; 508 (6): 967-82.                    


Impact of epsilon and theta subunits on pharmacological properties of alpha3beta1 GABAA receptors expressed in Xenopus oocytes., Ranna M., BMC Pharmacol. January 13, 2006; 6 1.              


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis., Yao M., J Neuroendocrinol. November 1, 2004; 16 (11): 880-93.


Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats., Wu J., J Membr Biol. February 1, 2004; 197 (3): 179-91.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs., Sánchez-Camacho C., J Comp Neurol. April 22, 2002; 446 (1): 11-24.


Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians., Sánchez-Camacho C., Brain Res Bull. February 1, 2002; 57 (3-4): 325-30.


Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord., Sánchez-Camacho C., J Comp Neurol. May 28, 2001; 434 (2): 209-32.


Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin., Sánchez-Camacho C., J Comp Neurol. May 28, 2001; 434 (2): 186-208.


Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. March 1, 2001; 13 (6): 1093-100.


Expression of TMEFF1 mRNA in the mouse central nervous system: precise examination and comparative studies of TMEFF1 and TMEFF2., Kanemoto N., Brain Res Mol Brain Res. January 31, 2001; 86 (1-2): 48-55.


Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians., Marín O., Eur J Morphol. April 1, 1999; 37 (2-3): 155-9.


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


Topographical relationship between neuronal nitric oxide synthase immunoreactivity and cyclic 3',5'-guanosine monophosphate accumulation in the brain of the adult Xenopus laevis., Allaerts W., J Chem Neuroanat. July 1, 1998; 15 (1): 41-56.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Nitric oxide synthase and background adaptation in Xenopus laevis., Allaerts W., J Chem Neuroanat. December 1, 1997; 14 (1): 21-31.


Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs., Márin O., J Comp Neurol. July 7, 1997; 383 (3): 349-69.


Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens., Marín O., J Comp Neurol. February 3, 1997; 378 (1): 50-69.


Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens., Marín O., J Comp Neurol. February 3, 1997; 378 (1): 16-49.


Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis., Brüning G., Dev Biol. November 25, 1996; 741 (1-2): 331-43.                


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Colocalization of mu opioid receptors with GIRK1 potassium channels in the rat brain: an immunocytochemical study., Bausch SB., Recept Channels. January 1, 1995; 3 (3): 221-41.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system., Dineley-Miller K., Brain Res Mol Brain Res. December 1, 1992; 16 (3-4): 339-44.

???pagination.result.page??? 1