Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8704) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and nefm)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax., Yaoita Y., Genes Cells. December 1, 2018; 23 (12): 998-1008.              


c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism., Hutchins EJ., J Neurosci. September 11, 2013; 33 (37): 14666-80.                


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration., Ananthakrishnan L., Brain Res. January 23, 2009; 1250 27-40.


Zac1 promotes a Müller glial cell fate and interferes with retinal ganglion cell differentiation in Xenopus retina., Ma L., Dev Dyn. January 1, 2007; 236 (1): 192-202.          


Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD., Logan MA., Dev Biol. September 15, 2005; 285 (2): 570-83.          


Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons., Gervasi C., J Comp Neurol. June 23, 2003; 461 (2): 262-75.            


Metalloproteases and guidance of retinal axons in the developing visual system., Webber CA., J Neurosci. September 15, 2002; 22 (18): 8091-100.                  


Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors., Talikka M., Dev Biol. July 1, 2002; 247 (1): 137-48.          


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O., Dev Biol. May 15, 2001; 233 (2): 495-512.            


The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos., Ault KT., Dev Biol. December 1, 1997; 192 (1): 162-71.            


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate., Turner DL., Genes Dev. June 15, 1994; 8 (12): 1434-47.        


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    

???pagination.result.page??? 1