Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3922) Expression Attributions Wiki
XB-ANAT-50

Papers associated with mesoderm (and six3)

Limit to papers also referencing gene:
Show all mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues., Sakagami K., Dev Growth Differ. April 1, 2024; 66 (3): 256-265.        


Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):         


Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development., Cowell LM., PLoS One. January 1, 2023; 18 (10): e0286040.                                  


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. September 14, 2020; 9                                                                                           


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. July 1, 2019; 57 (7-8): e23296.            


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis., Zhu K., PLoS One. April 11, 2017; 12 (4): e0175287.                


Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling., Jin Z., Development. November 1, 2016; 143 (21): 3944-3955.                        


Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation., Motahari Z., Development. October 1, 2016; 143 (19): 3560-3572.                                      


Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes., Tuazon FB., Semin Cell Dev Biol. June 1, 2015; 42 118-33.


Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells., Wong KA., Biol Open. March 6, 2015; 4 (4): 573-83.                


Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis., Voglmeir J., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2015; 180 40-7.          


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 1, 2014; .


Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos., Ohata Y., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.          


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


Developmental mechanisms directing early anterior forebrain specification in vertebrates., Andoniadou CL., Cell Mol Life Sci. October 1, 2013; 70 (20): 3739-52.        


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


β-Adrenergic signaling promotes posteriorization in Xenopus early development., Mori S., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.            


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling., Lin HH., Stem Cells. November 1, 2010; 28 (11): 1950-60.              


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal., Rhinn M., Neural Dev. April 2, 2009; 4 12.              


Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning., Ambrosio AL., Dev Cell. August 1, 2008; 15 (2): 248-60.                            


Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1., Herr P., Development. May 1, 2008; 135 (10): 1813-22.                    


Unexpected activities of Smad7 in Xenopus mesodermal and neural induction., de Almeida I., Mech Dev. January 1, 2008; 125 (5-6): 421-31.              


The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions., Ermakova GV., Dev Biol. July 15, 2007; 307 (2): 483-97.        


The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning., Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.              


Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities., Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.                      


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field., Reversade B., Cell. December 16, 2005; 123 (6): 1147-60.                      


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


Neural and head induction by insulin-like growth factor signals., Pera EM., Dev Cell. November 1, 2001; 1 (5): 655-65.    


Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.                                                                        


A novel fork head gene mediates early steps during Xenopus lens formation., Kenyon KL., Development. November 1, 1999; 126 (22): 5107-16.            

???pagination.result.page??? 1