Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (69) Expression Attributions Wiki

Papers associated with radial glial cell

Limit to papers also referencing gene:
Results 1 - 50 of 69 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Sodium-calcium exchanger mediates sensory-evoked glial calcium transients in the developing retinotectal system., Benfey NJ., Cell Rep. October 5, 2021; 37 (1): 109791.                      

The role of cell lineage in the development of neuronal circuitry and function., Hartenstein V., Dev Biol. July 1, 2021; 475 165-180.

Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. October 26, 2018; 12 92.                

Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. February 1, 2017; 12 (2): 372-389.      

Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN., Stingele J., Mol Cell. November 17, 2016; 64 (4): 688-703.                

HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J., Front Cell Neurosci. May 6, 2016; 10 221.              

Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling., Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.                      

Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan., Chang TH., Elife. July 9, 2015; 4                               

Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L., Neuroscience. April 2, 2015; 290 61-79.  

HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y., PLoS One. March 16, 2015; 10 (3): e0120118.                

Revealing transient structures of nucleosomes as DNA unwinds., Chen Y., Nucleic Acids Res. July 1, 2014; 42 (13): 8767-76.              

Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize., Durbak AR., Plant Cell. July 1, 2014; 26 (7): 2978-95.

Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P., J Neuroendocrinol. April 1, 2014; .          

Improved method for the quantification of motility in glia and other morphologically complex cells., Sild M., Neural Plast. January 1, 2013; 2013 853727.            

Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis., Liu Y., J Neurosci. March 7, 2012; 32 (10): 3563-74.              

In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles., Bestman JE., J Comp Neurol. February 1, 2012; 520 (2): 401-33.                      

Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            

Ginsenoside Rg(3) decelerates hERG K(+) channel deactivation through Ser631 residue interaction., Choi SH., Eur J Pharmacol. August 1, 2011; 663 (1-3): 59-67.

Ginsenoside Rg3 enhances large conductance Ca2+-activated potassium channel currents: a role of Tyr360 residue., Choi SH., Mol Cells. February 1, 2011; 31 (2): 133-40.

The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates., Castro LF., BMC Evol Biol. January 24, 2011; 11 132.            

Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis., Gibbs KM., Eur J Neurosci. January 1, 2011; 33 (1): 9-25.    

Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                

Activation of cyclosporin A transport by a novel lambda light chain of human Ig surface antigen-related gene in Xenopus laevis oocytes., Kobayashi Y., Drug Metab Dispos. September 1, 2010; 38 (9): 1427-35.

Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit., Choi SH., Eur J Pharmacol. July 10, 2010; 637 (1-3): 138-47.

Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies., Li J., Front Neural Circuits. February 26, 2010; 4 6.              

Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                

Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type Ca(2+) channel current inhibitions., Choi SH., Biol Pharm Bull. July 1, 2009; 32 (7): 1224-30.

A role for Leu247 residue within transmembrane domain 2 in ginsenoside-mediated alpha7 nicotinic acetylcholine receptor regulation., Lee BH., Mol Cells. May 31, 2009; 27 (5): 591-9.

The effects of ginsenoside Rg(3) on human Kv1.4 channel currents without the N-terminal rapid inactivation domain., Lee JH, Lee JH., Biol Pharm Bull. April 1, 2009; 32 (4): 614-8.

Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis., Denver RJ., Dev Biol. February 1, 2009; 326 (1): 155-68.                

Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians., Barribeau SM., PLoS One. July 16, 2008; 3 (7): e2692.              

The POU homeobox protein Oct-1 regulates radial glia formation downstream of Notch signaling., Kiyota T., Dev Biol. March 15, 2008; 315 (2): 579-92.      

Ginsenoside Rg3 inhibits human Kv1.4 channel currents by interacting with the Lys531 residue., Lee JH, Lee JH., Mol Pharmacol. March 1, 2008; 73 (3): 619-26.

Ets-1 regulates radial glia formation during vertebrate embryogenesis., Kiyota T., Organogenesis. October 1, 2007; 3 (2): 93-101.          

Mutations of arginine 222 in pre-transmembrane domain I of mouse 5-HT(3A) receptor abolish 20(R)- but not 20(S)-ginsenoside Rg(3) inhibition of 5-HT-mediated ion currents., Lee BH., Biol Pharm Bull. September 1, 2007; 30 (9): 1721-6.

Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus., Kim JH., Brain Res. March 9, 2007; 1136 (1): 190-9.

Identification of ginsenoside interaction sites in 5-HT3A receptors., Lee BH., Neuropharmacology. March 1, 2007; 52 (4): 1139-50.

Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes., Lee JH., Mol Cells. February 28, 2006; 21 (1): 52-62.

Characteristics of ginsenoside Rg3-mediated brain Na+ current inhibition., Lee JH, Lee JH., Mol Pharmacol. October 1, 2005; 68 (4): 1114-26.

Glial fibrillary acidic protein and vimentin expression in the frog olfactory system during metamorphosis., Huang Q., Neuroreport. September 8, 2005; 16 (13): 1439-42.

Evidence that the tertiary structure of 20(S)-ginsenoside Rg(3) with tight hydrophobic packing near the chiral center is important for Na(+) channel regulation., Kang DI., Biochem Biophys Res Commun. August 12, 2005; 333 (4): 1194-201.

Homer expression in the Xenopus tadpole nervous system., Foa L., J Comp Neurol. June 20, 2005; 487 (1): 42-53.                    

A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation., Shiina N., J Neurosci. April 27, 2005; 25 (17): 4420-34.              

Connexin 43 expression in glial cells of developing rhombomeres of Xenopus laevis., Katbamna B., Int J Dev Neurosci. February 1, 2004; 22 (1): 47-55.            

Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors., Sala F., J Pharmacol Exp Ther. June 1, 2002; 301 (3): 1052-9.

Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes., Choi S., Mol Pharmacol. April 1, 2002; 61 (4): 928-35.

Intermediate filament proteins define different glial subpopulations., Yoshida M., J Neurosci Res. February 1, 2001; 63 (3): 284-9.

A novel activation of Ca(2+)-activated Cl(-) channel in Xenopus oocytes by Ginseng saponins: evidence for the involvement of phospholipase C and intracellular Ca(2+) mobilization., Choi S., Br J Pharmacol. February 1, 2001; 132 (3): 641-8.

Glial-defined rhombomere boundaries in developing Xenopus hindbrain., Yoshida M., J Comp Neurol. August 14, 2000; 424 (1): 47-57.              

Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      

Page(s): 1 2 Next