Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1722) Expression Attributions Wiki
XB-ANAT-106

Papers associated with tail bud (and cer1)

Limit to papers also referencing gene:
Show all tail bud papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities., Hsu DR., Mol Cell. April 1, 1998; 1 (5): 673-83.                  


The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation., Kim SH., Development. December 1, 1998; 125 (23): 4681-90.                      


Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways., Zorn AM., Dev Biol. May 15, 1999; 209 (2): 282-97.                    


Characterization of a novel member of the FGF family, XFGF-20, in Xenopus laevis., Koga C., Biochem Biophys Res Commun. August 11, 1999; 261 (3): 756-65.                  


Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development., Wünnenberg-Stapleton K., Development. December 1, 1999; 126 (23): 5339-51.    


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I., Genes Dev. February 1, 2000; 14 (3): 313-27.                    


The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus., Cheng AM., Development. March 1, 2000; 127 (5): 1049-61.                


Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus., Fetka I., Mech Dev. May 1, 2000; 93 (1-2): 49-58.          


Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach., Heasman J., Dev Biol. June 1, 2000; 222 (1): 124-34.        


Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros., Shibata M., Mech Dev. September 1, 2000; 96 (2): 243-6.  


A role for GATA5 in Xenopus endoderm specification., Weber H., Development. October 1, 2000; 127 (20): 4345-60.                  


Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene., Wall NA., Dev Biol. November 15, 2000; 227 (2): 495-509.              


A study of Xlim1 function in the Spemann-Mangold organizer., Kodjabachian L., Int J Dev Biol. January 1, 2001; 45 (1): 209-18.            


Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer., De Robertis EM., Int J Dev Biol. January 1, 2001; 45 (1): 189-97.        


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Systematic screening and expression analysis of the head organizer genes in Xenopus embryos., Shibata M., Dev Biol. November 15, 2001; 239 (2): 241-56.                  


otx2 expression in the ectoderm activates anterior neural determination and is required for Xenopus cement gland formation., Gammill LS., Dev Biol. December 1, 2001; 240 (1): 223-36.              


Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation., Hayata T., Mech Dev. March 1, 2002; 112 (1-2): 37-51.                


The roles of three signaling pathways in the formation and function of the Spemann Organizer., Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.                  


Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning., Levin M., Cell. October 4, 2002; 111 (1): 77-89.              


Molecular components of the endoderm specification pathway in Xenopus tropicalis., D'Souza A., Dev Dyn. January 1, 2003; 226 (1): 118-27.                            


Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms., Chang C., Dev Biol. March 1, 2003; 255 (1): 1-11.                    


Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants., Latinkić BV., Development. August 1, 2003; 130 (16): 3865-76.              


Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions., Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.                    


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


New roles for FoxH1 in patterning the early embryo., Kofron M., Development. October 1, 2004; 131 (20): 5065-78.              


Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo., Pera EM., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.                                  


Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition., Delaune E., Development. January 1, 2005; 132 (2): 299-310.                    


Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase., Dupont S., Cell. April 8, 2005; 121 (1): 87-99.                                  


Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos., Reversade B., Development. August 1, 2005; 132 (15): 3381-92.            


Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning., Houston DW., Development. November 1, 2005; 132 (21): 4845-55.              


Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation., Wills A., Dev Biol. January 1, 2006; 289 (1): 166-78.                                  


Vg 1 is an essential signaling molecule in Xenopus development., Birsoy B., Development. January 1, 2006; 133 (1): 15-20.    


Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development., Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.                


A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos., Onuma Y., Mech Dev. June 1, 2006; 123 (6): 463-71.        


Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo., Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.                    


FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development., Steiner AB., Development. December 1, 2006; 133 (24): 4827-38.                    


SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation., Fukui A., Biochem Biophys Res Commun. March 9, 2007; 354 (2): 472-7.        


TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis., Ogata S., Genes Dev. July 15, 2007; 21 (14): 1817-31.                  


Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis., Luque ME., Dev Dyn. January 1, 2008; 237 (1): 112-23.          


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer., Rankin SA, Rankin SA., Dev Biol. March 15, 2011; 351 (2): 297-310.                            


HEB and E2A function as SMAD/FOXH1 cofactors., Yoon SJ., Genes Dev. August 1, 2011; 25 (15): 1654-61.            


KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins., Matsukawa S., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.        


Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e., Cha SW., PLoS One. January 1, 2012; 7 (7): e41782.            


Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer., Sudou N., Development. May 1, 2012; 139 (9): 1651-61.                  


A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus., Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.                                      


Self-regulation of the head-inducing properties of the Spemann organizer., Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.                            


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY., Development. February 1, 2013; 140 (4): 853-60.                                              

???pagination.result.page??? 1 2 ???pagination.result.next???