Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3418) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral (and dnai1)

Limit to papers also referencing gene:
Show all ventral papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians., Shook DR., Elife. April 11, 2022; 11                                     


UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy., Yoon MJ., Nat Commun. March 29, 2021; 12 (1): 1955.                


CFAP43 modulates ciliary beating in mouse and Xenopus., Rachev E., Dev Biol. March 15, 2020; 459 (2): 109-125.                                                                    


Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development., Willson JA., Gene Expr Patterns. December 1, 2019; 34 119066.              


Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus., Adil MT., Exp Eye Res. October 1, 2019; 187 107767.                                        


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):                                     


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. October 26, 2018; 12 92.                


Cdc42 regulates the cellular localization of Cdc42ep1 in controlling neural crest cell migration., Cohen S., J Mol Cell Biol. October 1, 2018; 10 (5): 376-387.                    


Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells., Chernoff EAG., Front Cell Neurosci. January 1, 2018; 12 45.                          


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M., PLoS One. February 6, 2015; 10 (2): e0117370.                            


Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal-ventral patterning., Forristall CA., Dev Dyn. October 1, 2014; 243 (10): 1262-74.            


Spatial and temporal control of transgene expression in zebrafish., Akerberg AA., PLoS One. January 1, 2014; 9 (3): e92217.            


Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene., Geng FS., Development. November 1, 2013; 140 (21): 4362-74.              


ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3., Hoff S., Nat Genet. August 1, 2013; 45 (8): 951-6.                                


Neurotoxic unc-8 mutants encode constitutively active DEG/ENaC channels that are blocked by divalent cations., Wang Y., J Gen Physiol. August 1, 2013; 142 (2): 157-69.                


Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo., Adams DS., Biol Open. March 15, 2013; 2 (3): 306-13.          


Imaging adhesion and signaling dynamics in Xenopus laevis growth cones., Santiago-Medina M., Dev Neurobiol. April 1, 2012; 72 (4): 585-99.          


Single vesicle imaging indicates distinct modes of rapid membrane retrieval during nerve growth., Hines JH., BMC Biol. January 30, 2012; 10 4.                          


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR., Sato S., Dev Biol. August 1, 2010; 344 (1): 158-71.  


Integrin alpha5beta1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation., Spicer E., PLoS One. May 17, 2010; 5 (5): e10665.                      


The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets., Lee C, Lee C, Lee C., Dev Dyn. June 1, 2009; 238 (6): 1480-91.                            


Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA., Matthews HK., Development. May 1, 2008; 135 (10): 1771-80.                    


Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles., Taniguchi Y., Dev Growth Differ. February 1, 2008; 50 (2): 109-20.              


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A., Development. February 1, 2007; 134 (4): 779-88.                  


Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis., Levine AJ., Dev Biol. February 1, 2003; 254 (1): 50-67.                      


Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate., Kenyon KL., Dev Biol. December 1, 2001; 240 (1): 77-91.          


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


The fate of cells in the tailbud of Xenopus laevis., Davis RL., Development. January 1, 2000; 127 (2): 255-67.              


Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus., Moore KB., Dev Biol. August 1, 1999; 212 (1): 25-41.              


Programmed cell death during Xenopus development: a spatio-temporal analysis., Hensey C., Dev Biol. November 1, 1998; 203 (1): 36-48.              


Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation., Lustig KD., Development. December 1, 1996; 122 (12): 4001-12.                  


A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation., Lustig KD., Development. October 1, 1996; 122 (10): 3275-82.                


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  

???pagination.result.page??? 1