Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (369) Expression Attributions Wiki
XB-ANAT-241

Papers associated with colon

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8

Sort Newest To Oldest Sort Oldest To Newest

Epithelial sodium channel related to proteins involved in neurodegeneration., Canessa CM., Nature. February 4, 1993; 361 (6411): 467-70.


Epidermal growth factor-like immunoreactivity in the buccopharyngeal mucous glands of Xenopus laevis tadpoles., Lee CW, Lee CW., Gen Comp Endocrinol. January 1, 1993; 89 (1): 82-90.  


Developmental regulation and tissue distribution of the liver transcription factor LFB1 (HNF1) in Xenopus laevis., Bartkowski S., Mol Cell Biol. January 1, 1993; 13 (1): 421-31.


Poorly selective cation channels in apical membranes of epithelia., Van Driessche W., EXS. January 1, 1993; 66 225-45.


Expression of amiloride-sensitive Na+ channels of hen lower intestine in Xenopus oocytes: electrophysiological studies on the dependence of varying NaCl intake., Weber WM., Biochim Biophys Acta. November 9, 1992; 1111 (2): 159-64.


Distribution of mRNA of a Na(+)-independent neutral amino acid transporter cloned from rat kidney and its expression in mammalian tissues and Xenopus laevis oocytes., Yan N., Proc Natl Acad Sci U S A. November 1, 1992; 89 (21): 9982-5.


Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes., Magagnin S., J Biol Chem. August 5, 1992; 267 (22): 15384-90.


NaCl-dependent expression of amiloride-blockable Na+ channel in Xenopus oocytes., Asher C., Am J Physiol. February 1, 1992; 262 (2 Pt 1): G244-8.


p53 mutations in human cancers., Hollstein M., Science. July 5, 1991; 253 (5015): 49-53.


[Concanavalin-binding proteins and cytokeratins in different tissues of the early amphibian gastrula (Rana temporaria, Xenopus laevis)]., Simirskiĭ VN., Ontogenez. January 1, 1991; 22 (3): 245-56.


Electrolyte transport through a cation-selective ion channel in large intestinal enterocytes of Xenopus laevis., Krattenmacher R., J Exp Biol. January 1, 1991; 155 275-90.


Ca-sensitive sodium absorption in the colon of Xenopus laevis., Krattenmacher R., J Comp Physiol B. January 1, 1990; 160 (2): 161-5.


Movements of the large intestine in the anuran larvae, Xenopus laevis., Naitoh T., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1990; 97 (1): 201-7.


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes., Hediger MA., Proc Natl Acad Sci U S A. May 1, 1987; 84 (9): 2634-7.


Evidence for the presence of xenopsin-related peptide(s) in the gastric mucosa of mammals., Feurle GE., J Clin Invest. July 1, 1985; 76 (1): 156-62.


Corticotropin-releasing factor (CRF)-like immunoreactivity in the gastro-entero-pancreatic endocrine system., Petrusz P., Peptides. January 1, 1984; 5 Suppl 1 71-8.


Somatostatin-immunoreactive cells in the gastro-entero-pancreatic endocrine system of Xenopus laevis., Hacker G., Z Mikrosk Anat Forsch. January 1, 1983; 97 (6): 929-40.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8