Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-3714

Papers associated with right (and mos)

Limit to papers also referencing gene:
Show all right papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles., Huang LC., Proc Natl Acad Sci U S A. January 16, 2024; 121 (3): e2316542121.                        


Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2., Nader N., PLoS Biol. November 2, 2020; 18 (11): e3000901.          


Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era., Meneau F., Cells. June 19, 2020; 9 (6):             


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS., Elife. January 14, 2020; 9                                                                                               


Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2., Cragle C., J Biol Chem. May 16, 2014; 289 (20): 14239-51.            


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M., Sci Rep. January 1, 2013; 3 2278.      


Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation., Charlesworth A., Dev Biol. September 15, 2012; 369 (2): 177-90.              


A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions., Pfeuty B., PLoS Comput Biol. January 1, 2012; 8 (1): e1002329.              


Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity., Sun L., PLoS One. January 1, 2011; 6 (11): e27928.            


BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus., Wills AE., Dev Biol. January 15, 2010; 337 (2): 335-50.                  


Features of programmed cell death in intact Xenopus oocytes and early embryos revealed by near-infrared fluorescence and real-time monitoring., Johnson CE., Cell Death Differ. January 1, 2010; 17 (1): 170-9.            


Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA., Zhang Y., BMC Dev Biol. January 28, 2009; 9 7.          


Evidence that phosphatidylinositol 3-kinase is involved in sperm-induced tyrosine kinase signaling in Xenopus egg fertilization., Mammadova G., BMC Dev Biol. January 28, 2009; 9 68.        


Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation., El-Jouni W., Dev Biol. December 1, 2008; 324 (1): 99-107.        


Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus., Barnard DC., Mol Cell Biol. September 1, 2005; 25 (17): 7605-15.                


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C., Development. January 1, 1995; 121 (1): 201-8.          

???pagination.result.page??? 1