Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-3714

Papers associated with right (and gmnn)

Limit to papers also referencing gene:
Show all right papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TopBP1 utilises a bipartite GINS binding mode to support genome replication., Day M., Nat Commun. February 27, 2024; 15 (1): 1797.              


Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion., Edri T., Front Cell Dev Biol. January 1, 2023; 11 1282273.                    


POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps., Mann A., Mol Cell. November 17, 2022; 82 (22): 4218-4231.e8.                              


A non-transcriptional function of Yap regulates the DNA replication program in Xenopus laevis., Meléndez García R., Elife. July 15, 2022; 11                             


Dihydropyrimidinase protects from DNA replication stress caused by cytotoxic metabolites., Basbous J., Nucleic Acids Res. February 28, 2020; 48 (4): 1886-1904.              


TRAIP is a master regulator of DNA interstrand crosslink repair., Wu RA., Nature. March 1, 2019; 567 (7747): 267-272.                          


RNAs coordinate nuclear envelope assembly and DNA replication through ELYS recruitment to chromatin., Aze A., Nat Commun. December 14, 2017; 8 (1): 2130.            


The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines., Gardner NJ., Cell Chem Biol. August 17, 2017; 24 (8): 981-992.e4.                        


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S., Genesis. June 1, 2016; 54 (6): 334-49.                          


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL., Genesis. May 1, 2015; 53 (5): 308-20.          


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


On becoming neural: what the embryo can tell us about differentiating neural stem cells., Moody SA., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.              


Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex., Pe'er T., PLoS One. January 1, 2013; 8 (2): e57532.          


Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract., Nakaoka H., J Biol Chem. January 2, 2012; 287 (1): 619-627.              


Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition., Kerns SL., PLoS One. January 1, 2012; 7 (5): e38009.                        


Geminin-deficient neural stem cells exhibit normal cell division and normal neurogenesis., Schultz KM., PLoS One. March 9, 2011; 6 (3): e17736.          


The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module., Rogers CD., BMC Dev Biol. January 26, 2011; 11 74.        


DNA is a co-factor for its own replication in Xenopus egg extracts., Lebofsky R., Nucleic Acids Res. January 1, 2011; 39 (2): 545-55.            


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication., Balestrini A., Nat Cell Biol. May 1, 2010; 12 (5): 484-91.        


Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation., Yan B., Dev Dyn. June 1, 2009; 238 (6): 1358-65.        


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts., Labit H., Nucleic Acids Res. October 1, 2008; 36 (17): 5623-34.              


Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo., Rogers CD., Dev Biol. January 1, 2008; 313 (1): 307-19.                  


Non-transcriptional control of DNA replication by c-Myc., Dominguez-Sola D., Nature. July 26, 2007; 448 (7152): 445-51.      


XSip1 neuralizing activity involves the co-repressor CtBP and occurs through BMP dependent and independent mechanisms., van Grunsven LA., Dev Biol. June 1, 2007; 306 (1): 34-49.            


Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress., Woodward AM., J Cell Biol. June 5, 2006; 173 (5): 673-83.              


Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo., Taylor JJ., Dev Biol. January 15, 2006; 289 (2): 494-506.                


BMP4-dependent expression of Xenopus Grainyhead-like 1 is essential for epidermal differentiation., Tao J., Development. March 1, 2005; 132 (5): 1021-34.        


Neural induction takes a transcriptional twist., Bainter JJ., Dev Dyn. November 1, 2001; 222 (3): 315-27.  


Microarray-based analysis of early development in Xenopus laevis., Altmann CR., Dev Biol. August 1, 2001; 236 (1): 64-75.            


Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos., Leclerc C., J Cell Sci. October 1, 2000; 113 Pt 19 3519-29.                  

???pagination.result.page??? 1