Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (71) Attributions Wiki
XB-STAGE-71

Papers associated with NF stage 57

Limit to papers also referencing gene:
Results 1 - 50 of 71 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Microvascularization of the spleen in larval and adult Xenopus laevis: Histomorphology and scanning electron microscopy of vascular corrosion casts., Lametschwandtner A, Radner C, Minnich B., J Morphol. December 1, 2016; 277 (12): 1559-1569.


Evidence for an amphibian sixth digit., Hayashi S, Kobayashi T, Yano T, Kamiyama N, Egawa S, Seki R, Takizawa K, Okabe M, Yokoyama H, Tamura K., Zoological Lett. June 15, 2015; 1 17.   


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M, Auradé F, Lambert FM, Le Ray D, Combes D, Thoby-Brisson M, Relaix F, Pollet N, Tostivint H., PLoS One. February 6, 2015; 10 (2): e0117370.   


Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis., Choi J, Suzuki KT, Sakuma T, Shewade L, Yamamoto T, Buchholz DR., Endocrinology. February 1, 2015; 156 (2): 735-44.   


Tetrabromobisphenol A disrupts vertebrate development via thyroid hormone signaling pathway in a developmental stage-dependent manner., Zhang YF, Zhang YF, Xu W, Lou QQ, Li YY, Zhao YX, Wei WJ, Qin ZF, Wang HL, Li JZ., Environ Sci Technol. July 15, 2014; 48 (14): 8227-34.


Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine., Ishizuya-Oka A, Kajita M, Hasebe T., PLoS One. January 1, 2014; 9 (9): e107611.   


M-cadherin-mediated intercellular interactions activate satellite cell division., Marti M, Montserrat N, Pardo C, Mulero L, Miquel-Serra L, Rodrigues AM, Andrés Vaquero J, Kuebler B, Morera C, Barrero MJ, Izpisua Belmonte JC., J Cell Sci. November 15, 2013; 126 (Pt 22): 5116-31.   


Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations., Lambert FM, Malinvaud D, Gratacap M, Straka H, Vidal PP., J Neurosci. April 17, 2013; 33 (16): 6845-56.   


Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells., Hasebe T, Fu L, Miller TC, Zhang Y, Zhang Y, Shi YB, Ishizuya-Oka A., Cell Biosci. April 1, 2013; 3 (1): 18.   


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP., Dev Dyn. February 1, 2013; 242 (2): 164-78.   


Agr genes, missing in amniotes, are involved in the body appendages regeneration in frog tadpoles., Ivanova AS, Tereshina MB, Ermakova GV, Belousov VV, Zaraisky AG., Sci Rep. January 1, 2013; 3 1279.   


Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs., Mescher AL, Neff AW, King MW, King MW., PLoS One. January 1, 2013; 8 (11): e80477.   


Cell type-specific translational profiling in the Xenopus laevis retina., Watson FL, Mills EA, Wang X, Guo C, Chen DF, Marsh-Armstrong N., Dev Dyn. December 1, 2012; 241 (12): 1960-72.   


Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG): a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy., Lametschwandtner A, Höll M, Bartel H, Anupunpisit V, Minnich B., Anat Sci Int. June 1, 2012; 87 (2): 88-100.   


Thyroid disruption by Di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) in Xenopus laevis., Shen O, Wu W, Du G, Liu R, Yu L, Sun H, Han X, Jiang Y, Shi W, Hu W, Song L, Xia Y, Wang S, Wang X., PLoS One. April 22, 2011; 6 (4): e19159.   


Overexpression of the transcription factor Msx1 is insufficient to drive complete regeneration of refractory stage Xenopus laevis hindlimbs., Barker DM, Beck CW., Dev Dyn. June 1, 2009; 238 (6): 1366-78.   


Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development., Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT., PLoS One. January 1, 2009; 4 (1): e3914.   


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ, Barker D, Day RC, Beck CW., BMC Dev Biol. June 23, 2008; 8 66.   


Cloning and expression of xP1-L, a new marker gene for larval surface mucous cells of tadpole stomach in Xenopus laevis., Ikuzawa M, Yasumasu S, Kobayashi K, Iuchi I., Gene Expr Patterns. December 1, 2007; 8 (1): 12-8.   


Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis., Walsh LA, Carere DA, Cooper CA, Damjanovski S., PLoS One. October 3, 2007; 2 (10): e1000.   


Neural MMP-28 expression precedes myelination during development and peripheral nerve repair., Werner SR, Mescher AL, Neff AW, King MW, King MW, Chaturvedi S, Duffin KL, Harty MW, Smith RC., Dev Dyn. October 1, 2007; 236 (10): 2852-64.   


Regeneration of the amphibian intestinal epithelium under the control of stem cell niche., Ishizuya-Oka A., Dev Growth Differ. February 1, 2007; 49 (2): 99-107.   


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D, Chesneau A, Ymlahi-Ouazzani Q, Boistel R, Pollet N, Ballagny C, Sachs LM, Demeneix B, Mazabraud A., Genesis. January 1, 2007; 45 (1): 1-10.   


Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration., Grow M, Neff AW, Mescher AL, King MW, King MW., Dev Dyn. October 1, 2006; 235 (10): 2667-85.   


Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis., Ramanathan S, Combes D, Molinari M, Simmers J, Sillar KT., Eur J Neurosci. October 1, 2006; 24 (7): 1907-22.   


One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis., Fujimoto K, Nakajima K, Yaoita Y., Dev Growth Differ. May 1, 2006; 48 (4): 223-41.   


All ZZ male Xenopus laevis provides a clear sex-reversal test for feminizing endocrine disruptors., Oka T, Mitsui N, Hinago M, Miyahara M, Fujii T, Tooi O, Santo N, Urushitani H, Iguchi T, Hanaoka Y, Mikamid H., Ecotoxicol Environ Saf. February 1, 2006; 63 (2): 236-43.


Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus., Millery J, Briand L, Bézirard V, Blon F, Fenech C, Richard-Parpaillon L, Quennedey B, Pernollet JC, Gascuel J., Eur J Neurosci. September 1, 2005; 22 (6): 1389-99.   


Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling during Xenopus laevis metamorphosis., Amano T, Fu L, Marshak A, Kwak O, Shi YB, Shi YB., Dev Dyn. September 1, 2005; 234 (1): 190-200.   


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.   


Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis., Nakajima K, Yaoita Y., Dev Dyn. June 1, 2003; 227 (2): 246-55.   


Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis., Utoh R, Shigenaga S, Watanabe Y, Yoshizato K., Dev Dyn. June 1, 2003; 227 (2): 157-69.   


Regeneration-specific expression pattern of three posterior Hox genes., Christen B, Beck CW, Lombardo A, Slack JM., Dev Dyn. February 1, 2003; 226 (2): 349-55.   


Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene., Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki K, Obara M, Yoshizato K., Dev Dyn. December 1, 2002; 225 (4): 561-70.   


Rod sensitivity during Xenopus development., Xiong WH, Yau KW., J Gen Physiol. December 1, 2002; 120 (6): 817-27.   


Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis., López JM, Smeets WJ, González A., J Comp Neurol. November 25, 2002; 453 (4): 418-34.   


Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis., Das B, Schreiber AM, Huang H, Brown DD., Proc Natl Acad Sci U S A. September 17, 2002; 99 (19): 12230-5.   


Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues., Cannata SM, Bagni C, Bernardini S, Christen B, Filoni S., Dev Biol. March 15, 2001; 231 (2): 436-46.   


The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis)., Herrera AA, Qiang H, Ko CP., J Neurobiol. December 1, 2000; 45 (4): 237-54.


Loss of reactivity to pan-cadherin antibody in epidermal cells as a marker for metamorphic alteration of Xenopus skin., Izutsu Y, Tochinai S, Onoé K., Dev Growth Differ. August 1, 2000; 42 (4): 377-83.   


Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs., Wolfe AD, Nye HL, Cameron JA., Dev Dyn. August 1, 2000; 218 (4): 681-97.   


Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells., Izutsu Y, Tochinai S, Iwabuchi K, Onoè K., Dev Biol. May 15, 2000; 221 (2): 365-74.   


Nerve-independence of limb regeneration in larval Xenopus laevis is related to the presence of mitogenic factors in early limb tissues., Filoni S, Bernardini S, Cannata SM, Ghittoni R., J Exp Zool. July 1, 1999; 284 (2): 188-96.


Metamorphosis-associated and region-specific expression of calbindin gene in the posterior intestinal epithelium of Xenopus laevis larva., Amano T, Noro N, Kawabata H, Kobayashi Y, Yoshizato K., Dev Growth Differ. April 1, 1998; 40 (2): 177-88.   


Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein., Ishizuya-Oka A, Ueda S, Damjanovski S, Li Q, Liang VC, Shi YB, Shi YB., Dev Biol. December 1, 1997; 192 (1): 149-61.   


A set of novel tadpole specific genes expressed only in the epidermis are down-regulated by thyroid hormone during Xenopus laevis metamorphosis., Furlow JD, Berry DL, Wang Z, Brown DD., Dev Biol. February 15, 1997; 182 (2): 284-98.   


Morphogenesis and differentiation of grafted blastemas formed in vitro from amputated hindlimbs of larval Xenopus laevis., Bernardini S, Cannata SM, Filoni S., J Exp Zool. November 1, 1996; 276 (4): 301-5.


Sympathetic innervation of the amphibian spleen: developmental studies in Xenopus laevis., Kinney KS, Felten SY, Cohen N., Dev Comp Immunol. January 1, 1996; 20 (1): 51-9.


Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larval Xenopus laevis: the role of limb innervation and that of limb differentiation., Filoni S, Velloso CP, Bernardini S, Cannata SM., J Exp Zool. November 1, 1995; 273 (4): 327-41.


Isoform transition of contractile proteins related to muscle remodeling with an axial gradient during metamorphosis in Xenopus laevis., Nishikawa A, Hayashi H., Dev Biol. September 1, 1994; 165 (1): 86-94.   

Page(s): 1 2 Next