Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2296) Expression Attributions Wiki
XB-ANAT-156

Papers associated with endocrine system (and avp)

Limit to papers also referencing gene:
Show all endocrine system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles., Paul B., Gen Comp Endocrinol. September 15, 2022; 326 114072.      


FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species., Beck J., Cell Tissue Res. July 1, 2020; 381 (1): 13-24.                            


Alterations along the Hypothalamic-Pituitary-Thyroid Axis of the Zebrafish (Danio rerio) after Exposure to Propylthiouracil., Schmidt F., J Thyroid Res. January 1, 2011; 2011 376243.                          


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution., Veeman MT., Dev Biol. August 1, 2010; 344 (1): 138-49.    


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis., van Wijk DC., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.


Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain., Huber RD., Am J Physiol Cell Physiol. February 1, 2007; 292 (2): C795-806.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis., Alvarez-Viejo M., Brain Res. April 18, 2003; 969 (1-2): 36-43.                


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Distribution of glutamic acid decarboxylase mRNA in the forebrain of the rainbow trout as studied by in situ hybridization., Anglade I., J Comp Neurol. July 26, 1999; 410 (2): 277-89.


Direct sequencing of neuropeptides in biological tissue by MALDI-PSD mass spectrometry., Jespersen S., Anal Chem. February 1, 1999; 71 (3): 660-6.


Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas., Newcomb R., Biochemistry. November 3, 1998; 37 (44): 15353-62.


A novel G protein-coupled receptor mediating both vasopressin- and oxytocin-like functions of Lys-conopressin in Lymnaea stagnalis., van Kesteren RE., Neuron. October 1, 1995; 15 (4): 897-908.


Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis., González A., J Chem Neuroanat. July 1, 1995; 9 (1): 27-40.


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor., Sugimoto T., J Biol Chem. October 28, 1994; 269 (43): 27088-92.


Structure, function, and phylogeny of [Arg8]vasotocin receptors from teleost fish and toad., Mahlmann S., Proc Natl Acad Sci U S A. February 15, 1994; 91 (4): 1342-5.


An additional arginine-vasotocin-related peptide, vasotocinyl-Gly-Lys, in Xenopus neurohypophysis., Iwamuro S., Biochim Biophys Acta. March 10, 1993; 1176 (1-2): 143-7.


Molecular cloning and expression of a rat V1a arginine vasopressin receptor., Morel A., Nature. April 9, 1992; 356 (6369): 523-6.


Localization and quantification of nonapeptide binding sites in the kidney of Xenopus laevis: evidence for the existence of two different nonapeptide receptors., Kloas W., Gen Comp Endocrinol. January 1, 1992; 85 (1): 71-8.


Identification of two types of neurophysins in Xenopus laevis neurointermediate pituitary homologous to mammalian MSEL- and VLDV-neurophysins., Chauvet J., Neuropeptides. March 1, 1990; 15 (3): 123-7.


Hydrins, hydroosmotic neurohypophysial peptides: osmoregulatory adaptation in amphibians through vasotocin precursor processing., Rouillé Y., Proc Natl Acad Sci U S A. July 1, 1989; 86 (14): 5272-5.


Immunocytochemical studies of vasotocin, mesotocin, and neurophysins in the Xenopus hypothalamo-neurohypophysial system., Conway KM., J Comp Neurol. October 22, 1987; 264 (4): 494-508.


Phylogenetic cross-reactivities of monoclonal antibodies produced against rat neurophysin., Ben-Barak Y., Cell Mol Neurobiol. December 1, 1984; 4 (4): 339-49.


Vasopressin and oxytocin precursors as model preprohormones., Ivell R., Neuroendocrinology. September 1, 1983; 37 (3): 235-40.

???pagination.result.page??? 1