Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (57) Expression Attributions Wiki
XB-ANAT-479

Papers associated with myoblast

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Reconstitution of muscle cell microtubule organization in vitro., Nadkarni AV., Cytoskeleton (Hoboken). October 1, 2021; 78 (10-12): 492-502.


Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension., Mok GF., Nat Commun. February 19, 2021; 12 (1): 1157.              


Disabled-2: a positive regulator of the early differentiation of myoblasts., Shang N., Cell Tissue Res. September 1, 2020; 381 (3): 493-508.                              


DNA methylation dynamics underlie metamorphic gene regulation programs in Xenopus tadpole brain., Kyono Y., Dev Biol. June 15, 2020; 462 (2): 180-196.                                                    


The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass., Ding S., BMC Genet. September 2, 2019; 20 (1): 72.      


Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog., Zhang Y., Mol Biol Rep. October 1, 2018; 45 (5): 751-761.


An atlas of Wnt activity during embryogenesis in Xenopus tropicalis., Borday C., PLoS One. January 1, 2018; 13 (4): e0193606.                


ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus., Ma P., Open Biol. August 1, 2017; 7 (8):                           


RARβ2 is required for vertebrate somitogenesis., Janesick A., Development. June 1, 2017; 144 (11): 1997-2008.                                              


pdzrn3 is required for pronephros morphogenesis in Xenopus laevis., Marracci S., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.                  


Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone., Tamura K., J Mol Endocrinol. June 1, 2015; 54 (3): 185-92.


USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling., Herhaus L., Open Biol. May 1, 2014; 4 (5): 140065.              


ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression., Siles L., Mol Cell Biol. April 1, 2013; 33 (7): 1368-82.


Muscle development and differentiation in the urodele Ambystoma mexicanum., Banfi S., Dev Growth Differ. May 1, 2012; 54 (4): 489-502.


Four and a half LIM protein 1C (FHL1C): a binding partner for voltage-gated potassium channel K(v1.5)., Poparic I., PLoS One. January 1, 2011; 6 (10): e26524.            


Lymph heart musculature is under distinct developmental control from lymphatic endothelium., Peyrot SM., Dev Biol. March 15, 2010; 339 (2): 429-38.        


Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats., Bosnakovski D., PLoS One. September 16, 2009; 4 (9): e7003.          


Regulation of desmin expression in adult-type myogenesis and muscle maturation during Xenopus laevis metamorphosis., Kawakami K., Zoolog Sci. June 1, 2009; 26 (6): 389-97.


Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation., Srsen V., BMC Cell Biol. April 13, 2009; 10 28.            


Foxc2 induces expression of MyoD and differentiation of the mouse myoblast cell line C2C12., Omoteyama K., Biochem Biophys Res Commun. July 6, 2007; 358 (3): 885-9.


Differential regulation of multiple alternatively spliced transcripts of MyoD., Fernandes JM., Gene. April 15, 2007; 391 (1-2): 178-85.


Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis., Martin BL., Dev Biol. April 15, 2007; 304 (2): 722-34.                


Differential tissue expression of a calpastatin isoform in Xenopus embryos., Di Primio C., Micron. January 1, 2007; 38 (3): 268-77.


The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation., Chen JF., Nat Genet. February 1, 2006; 38 (2): 228-33.


A novel role for lbx1 in Xenopus hypaxial myogenesis., Martin BL., Development. January 1, 2006; 133 (2): 195-208.                                


Regulation of specific developmental fates of larval- and adult-type muscles during metamorphosis of the frog Xenopus., Shimizu-Nishikawa K., Dev Biol. November 1, 2002; 251 (1): 91-104.


Assembly of centrosomal proteins and microtubule organization depends on PCM-1., Dammermann A., J Cell Biol. October 28, 2002; 159 (2): 255-66.                


The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts., Martin B., J Cell Biol. October 14, 2002; 159 (1): 113-22.                  


FGFR4 signaling is a necessary step in limb muscle differentiation., Marics I., Development. October 1, 2002; 129 (19): 4559-69.  


Hes6 regulates myogenic differentiation., Cossins J., Development. May 1, 2002; 129 (9): 2195-207.          


Hypaxial muscle migration during primary myogenesis in Xenopus laevis., Martin BL., Dev Biol. November 15, 2001; 239 (2): 270-80.            


The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway., Krebs LT., Dev Biol. October 1, 2001; 238 (1): 110-9.


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    


GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding., Thies RS., Growth Factors. January 1, 2001; 18 (4): 251-9.


Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine., Shibota Y., Differentiation. December 1, 2000; 66 (4-5): 227-38.


Neural crest-specific and general expression of distinct metalloprotease-disintegrins in early Xenopus laevis development., Cai H., Dev Biol. December 15, 1998; 204 (2): 508-24.      


Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis., Nicolas N., Dev Dyn. November 1, 1998; 213 (3): 309-21.


An interferon regulatory factor-related gene (xIRF-6) is expressed in the posterior mesoderm during the early development of Xenopus laevis., Hatada S., Gene. December 12, 1997; 203 (2): 183-8.      


Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail., Yaoita Y., J Biol Chem. February 21, 1997; 272 (8): 5122-7.


ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development., Alfandari D, Alfandari D., Dev Biol. February 15, 1997; 182 (2): 314-30.      


A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation., James PL., J Biol Chem. October 25, 1993; 268 (30): 22305-12.


A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage., Breitbart RE., Development. August 1, 1993; 118 (4): 1095-106.


Raised cyclic-AMP and a small applied electric field influence differentiation, shape, and orientation of single myoblasts., McCaig CD., Dev Biol. July 1, 1993; 158 (1): 172-82.


Noncoding regions of the gamma-actin gene influence the impact of the gene on myoblast morphology., Lloyd C., J Cell Biol. April 1, 1993; 121 (1): 73-82.


Cell adhesion molecules during Xenopus myogenesis., Levi G., Cytotechnology. January 1, 1993; 11 Suppl 1 S91-3.


Monoclonal antibodies for dystrophin analysis. Epitope mapping and improved binding to SDS-treated muscle sections., Nguyen TM., Biochem J. December 1, 1992; 288 ( Pt 2) 663-8.


EP-cadherin in muscles and epithelia of Xenopus laevis embryos., Levi G., Development. December 1, 1991; 113 (4): 1335-44.              


A Xenopus laevis creatine kinase isozyme (CK-III/III) expressed preferentially in larval striated muscle: cDNA sequence, developmental expression and subcellular immunolocalization., Robert J., Genet Res. August 1, 1991; 58 (1): 35-40.


Biogenesis of transverse tubules in skeletal muscle in vitro., Flucher BE., Dev Biol. May 1, 1991; 145 (1): 77-90.


Differential expression of creatine kinase isozymes during development of Xenopus laevis: an unusual heterodimeric isozyme appears at metamorphosis., Robert J., Differentiation. February 1, 1991; 46 (1): 23-34.            

???pagination.result.page??? 1 2 ???pagination.result.next???