Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (149) Expression Attributions Wiki
XB-ANAT-3853

Papers associated with melanotrope (and pomc)

Limit to papers also referencing gene:
Show all melanotrope papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis., Jansen EJ., J Biol Chem. August 10, 2012; 287 (33): 27537-46.              


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M., Endocrinology. June 1, 2011; 152 (6): 2321-9.


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


p24 Proteins from the same subfamily are functionally nonredundant., Strating JR., Biochimie. March 1, 2011; 93 (3): 528-32.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells., Jansen EJ., Mol Biol Cell. October 1, 2010; 21 (19): 3330-9.                


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis., Strating JR., Int J Biochem Cell Biol. July 1, 2009; 41 (7): 1619-27.                  


Incomplete posttranslational prohormone modifications in hyperactive neuroendocrine cells., Strating JR., BMC Cell Biol. April 13, 2009; 10 35.        


Functional diversity among p24 subfamily members., Strating JR., Biol Cell. April 1, 2009; 101 (4): 207-19.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH., Endocrinology. March 1, 2009; 150 (3): 1361-8.


Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway., Jansen EJ., Biochim Biophys Acta. December 1, 2008; 1783 (12): 2301-10.


Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell., van Herp F., J Endocrinol. September 1, 2008; 198 (3): 607-16.


Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell., Kidane AH., Endocrinology. August 1, 2008; 149 (8): 4177-82.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Actions of PACAP and VIP on melanotrope cells of Xenopus laevis., Kidane AH., Peptides. September 1, 2007; 28 (9): 1790-6.


Disparate effects of p24alpha and p24delta on secretory protein transport and processing., Strating JR., PLoS One. August 8, 2007; 2 (8): e704.              


Mutagenesis studies in transgenic Xenopus intermediate pituitary cells reveal structural elements necessary for correct prion protein biosynthesis., van Rosmalen JW., Dev Neurobiol. May 1, 2007; 67 (6): 715-27.        


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Transgene expression of prion protein induces crinophagy in intermediate pituitary cells., van Rosmalen JW., Dev Neurobiol. January 1, 2007; 67 (1): 81-96.              


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH., Gen Comp Endocrinol. January 1, 2007; 153 (1-3): 176-81.      


In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor., de Groot DM., Mol Endocrinol. November 1, 2006; 20 (11): 2987-98.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation., van Rosmalen JW., Dev Biol. February 23, 2006; 1075 (1): 20-5.        


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW., FEBS J. February 1, 2006; 273 (4): 847-62.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Expression of neuroserpin is linked to neuroendocrine cell activation., de Groot DM., Endocrinology. September 1, 2005; 146 (9): 3791-9.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Analysis of Xenopus melanotrope cell size and POMC-gene expression., Corstens GJ., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.

???pagination.result.page??? 1 2 ???pagination.result.next???