Results 1 - 50 of 60 results
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. , Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.
Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development. , DeLay BD ., Front Physiol. January 1, 2019; 10 143.
The Lhx1- Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. , Espiritu EB., Sci Rep. October 30, 2018; 8 (1): 16029.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Hspa9 is required for pronephros specification and formation in Xenopus laevis. , Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.
Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies. , Desgrange A., Cells. September 11, 2015; 4 (3): 483-99.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
The evolution and conservation of left- right patterning mechanisms. , Blum M ., Development. April 1, 2014; 141 (8): 1603-13.
Expression and localization of Rdd proteins in Xenopus embryo. , Lim JC., Anat Cell Biol. March 1, 2014; 47 (1): 18-27.
Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis. , Haramoto Y ., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.
Ephrin-Eph signaling in embryonic tissue separation. , Fagotto F ., Cell Adh Migr. January 1, 2014; 8 (4): 308-26.
The Smurf ubiquitin ligases regulate tissue separation via antagonistic interactions with ephrinB1. , Hwang YS., Genes Dev. March 1, 2013; 27 (5): 491-503.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left- right development. , Walentek P ., Cell Rep. May 31, 2012; 1 (5): 516-27.
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. , Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.
Functional conservation of Nematostella Wnts in canonical and noncanonical Wnt-signaling. , Rigo-Watermeier T., Biol Open. January 15, 2012; 1 (1): 43-51.
Expression analysis of the polypyrimidine tract binding protein ( PTBP1) and its paralogs PTBP2 and PTBP3 during Xenopus tropicalis embryogenesis. , Noiret M ., Int J Dev Biol. January 1, 2012; 56 (9): 747-53.
Lhx1 is required for specification of the renal progenitor cell field. , Cirio MC ., PLoS One. April 15, 2011; 6 (4): e18858.
Role of Tbx2 in defining the territory of the pronephric nephron. , Cho GS., Development. February 1, 2011; 138 (3): 465-74.
The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps. , Drews C., BMC Dev Biol. January 31, 2011; 11 5.
Yes-associated protein 65 ( YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. , Gee ST ., PLoS One. January 1, 2011; 6 (6): e20309.
A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. , Callery EM ., Dev Biol. April 1, 2010; 340 (1): 75-87.
Xenopus Wnt11b is identified as a potential pronephric inducer. , Tételin S., Dev Dyn. January 1, 2010; 239 (1): 148-59.
XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis. , Lee SJ., Mech Dev. January 1, 2010; 127 (1-2): 49-61.
Notch activates Wnt-4 signalling to control medio- lateral patterning of the pronephros. , Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.
Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. , Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.
Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction. , Steventon B ., Development. March 1, 2009; 136 (5): 771-9.
odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. , Mudumana SP., Development. October 1, 2008; 135 (20): 3355-67.
Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. , Colas A., Dev Biol. August 15, 2008; 320 (2): 351-65.
A functional screen for genes involved in Xenopus pronephros development. , Kyuno J ., Mech Dev. July 1, 2008; 125 (7): 571-86.
A ubiquitin-conjugating enzyme, ube2d3.2, regulates xMLK2 and pronephros formation in Xenopus. , Jean S., Differentiation. April 1, 2008; 76 (4): 431-41.
A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. , Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.
Organization of the pronephric kidney revealed by large-scale gene expression mapping. , Raciti D ., Genome Biol. January 1, 2008; 9 (5): R84.
The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. , Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. , Taelman V., Development. August 1, 2006; 133 (15): 2961-71.
Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. , James RG., Development. August 1, 2006; 133 (15): 2995-3004.
Growing kidney in the frog. , Chan T ., Nephron Exp Nephrol. January 1, 2006; 103 (3): e81-5.
Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. , Kobayashi A., Development. June 1, 2005; 132 (12): 2809-23.
Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. , von Bubnoff A., Dev Biol. May 15, 2005; 281 (2): 210-26.
The role of XTRAP-gamma in Xenopus pronephros development. , Li DH., Int J Dev Biol. January 1, 2005; 49 (4): 401-8.
The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. , Wilm B., Dev Biol. July 1, 2004; 271 (1): 176-89.
Pronephric duct extension in amphibian embryos: migration and other mechanisms. , Drawbridge J ., Dev Dyn. January 1, 2003; 226 (1): 1-11.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.
Xenopus Na, K-ATPase: primary sequence of the beta2 subunit and in situ localization of alpha1, beta1, and gamma expression during pronephric kidney development. , Eid SR., Differentiation. September 1, 2001; 68 (2-3): 115-25.
Designation of the anterior/ posterior axis in pregastrula Xenopus laevis. , Lane MC ., Dev Biol. September 1, 2000; 225 (1): 37-58.
Developmental basis of pronephric defects in Xenopus body plan phenotypes. , Seufert DW ., Dev Biol. November 15, 1999; 215 (2): 233-42.
Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin. , Streit A., Mech Dev. July 1, 1999; 85 (1-2): 85-96.