Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (20199) Expression Attributions Wiki
XB-ANAT-464

Papers associated with anatomical structure (and atp1a1)

Limit to papers also referencing gene:
Show all anatomical structure papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Developmental regulation of cellular metabolism is required for intestinal elongation and rotation., Grzymkowski JK., Development. February 15, 2024; 151 (4):                                       


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution., Hossain N., Dev Growth Differ. October 1, 2023; 65 (8): 481-497.                  


Normal Table of Xenopus development: a new graphical resource., Zahn N., Development. July 15, 2022; 149 (14):                         


Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components., Hantel F., J Cell Sci. May 1, 2022; 135 (9):                                     


Nucleoporin NUP205 plays a critical role in cilia and congenital disease., Marquez J., Dev Biol. January 1, 2021; 469 46-53.                        


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                                


Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan., Sindelka R., Sci Rep. May 29, 2018; 8 (1): 8315.                


Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9., DeLay BD., Genetics. February 1, 2018; 208 (2): 673-686.                        


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology., Morrill GA., J Mol Evol. May 1, 2016; 82 (4-5): 183-98.              


Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase., Cherniavsky Lev M., Am J Physiol Cell Physiol. July 15, 2015; 309 (2): C126-35.


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin., Lodowski KH., J Neurosci. August 21, 2013; 33 (34): 13621-38.                      


ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3., Hoff S., Nat Genet. August 1, 2013; 45 (8): 951-6.                                


Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis., Konno N., Gen Comp Endocrinol. May 1, 2013; 185 44-56.                          


The C-terminal cavity of the Na,K-ATPase analyzed by docking and electrophysiology., Paulsen PA., Mol Membr Biol. March 1, 2013; 30 (2): 195-205.


Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis., Caine ST., Dev Dyn. March 1, 2013; 242 (3): 219-29.          


Plasma membrane events associated with the meiotic divisions in the amphibian oocyte: insights into the evolution of insulin transduction systems and cell signaling., Morrill GA., BMC Dev Biol. January 23, 2013; 13 3.              


Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing., del Viso F., BMC Genomics. November 21, 2012; 13 649.                  


Control of gastric H,K-ATPase activity by cations, voltage and intracellular pH analyzed by voltage clamp fluorometry in Xenopus oocytes., Dürr KL., PLoS One. January 1, 2012; 7 (3): e33645.            


Progesterone-induced changes in the phosphoryl potential during the meiotic divisions in amphibian oocytes: role of Na/K-ATPase., Morrill GA., BMC Dev Biol. January 26, 2011; 11 67.                


E2P state stabilization by the N-terminal tail of the H,K-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions., Dürr KL., J Biol Chem. July 24, 2009; 284 (30): 20147-54.


Functional significance of E2 state stabilization by specific alpha/beta-subunit interactions of Na,K- and H,K-ATPase., Dürr KL., J Biol Chem. February 6, 2009; 284 (6): 3842-54.


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP., Mech Dev. January 1, 2009; 126 (3-4): 142-59.        


Ankyrin-B is required for coordinated expression of beta-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors., Kizhatil K., Exp Eye Res. January 1, 2009; 88 (1): 57-64.  


Characterization of Na,K-ATPase and H,K-ATPase enzymes with glycosylation-deficient beta-subunit variants by voltage-clamp fluorometry in Xenopus oocytes., Dürr KL., Biochemistry. April 8, 2008; 47 (14): 4288-97.


Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na,K-ATPase isozymes., Bibert S., J Biol Chem. January 4, 2008; 283 (1): 476-486.


H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry., Aw S., Mech Dev. January 1, 2008; 125 (3-4): 353-72.    


Evolution of Na,K-ATPase beta m-subunit into a coregulator of transcription in placental mammals., Pestov NB., Proc Natl Acad Sci U S A. July 3, 2007; 104 (27): 11215-20.


Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles., Teriete P., Biochemistry. June 12, 2007; 46 (23): 6774-83.


FXYD6 is a novel regulator of Na,K-ATPase expressed in the inner ear., Delprat B., J Biol Chem. March 9, 2007; 282 (10): 7450-6.


Structural and functional properties of two human FXYD3 (Mat-8) isoforms., Bibert S., J Biol Chem. December 22, 2006; 281 (51): 39142-51.


Access of extracellular cations to their binding sites in Na,K-ATPase: role of the second extracellular loop of the alpha subunit., Capendeguy O., J Gen Physiol. March 1, 2006; 127 (3): 341-52.              


The third sodium binding site of Na,K-ATPase is functionally linked to acidic pH-activated inward current., Li C., J Membr Biol. January 1, 2006; 213 (1): 1-9.


Role of the transmembrane domain of FXYD7 in structural and functional interactions with Na,K-ATPase., Li C., J Biol Chem. December 30, 2005; 280 (52): 42738-43.


Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel)., Lubarski I., J Biol Chem. November 11, 2005; 280 (45): 37717-24.


Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation., Koenderink JB., Biochim Biophys Acta. May 15, 2005; 1669 (1): 61-8.


Microarray-based identification of VegT targets in Xenopus., Taverner NV., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Structural and functional interaction sites between Na,K-ATPase and FXYD proteins., Li C., J Biol Chem. September 10, 2004; 279 (37): 38895-902.


FXYD7, mapping of functional sites involved in endoplasmic reticulum export, association with and regulation of Na,K-ATPase., Crambert G., J Biol Chem. July 16, 2004; 279 (29): 30888-95.


Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules., Zhou X, Zhou X., Dev Biol. July 15, 2004; 271 (2): 322-38.                                  


The fourth transmembrane segment of the Na,K-ATPase alpha subunit: a systematic mutagenesis study., Horisberger JD., J Biol Chem. July 9, 2004; 279 (28): 29542-50.


New molecular determinants controlling the accessibility of ouabain to its binding site in human Na,K-ATPase alpha isoforms., Crambert G., Mol Pharmacol. February 1, 2004; 65 (2): 335-41.


[Functional interaction between nicotinic cholinergic receptors and Na, K-ATPase in the skeletal muscles]., Krivoĭ II., Ross Fiziol Zh Im I M Sechenova. January 1, 2004; 90 (1): 59-72.


Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket., Koenderink JB., J Biol Chem. December 19, 2003; 278 (51): 51213-22.


Nongastric H,K-ATPase: structure and functional properties., Modyanov N., Ann N Y Acad Sci. April 1, 2003; 986 183-7.


Early embryonic expression of ion channels and pumps in chick and Xenopus development., Rutenberg J., Dev Dyn. December 1, 2002; 225 (4): 469-84.                            


Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties., Crambert G., Proc Natl Acad Sci U S A. August 20, 2002; 99 (17): 11476-81.


FXYD7 is a brain-specific regulator of Na,K-ATPase alpha 1-beta isozymes., Béguin P., EMBO J. July 1, 2002; 21 (13): 3264-73.


Betam, a structural member of the X,K-ATPase beta subunit family, resides in the ER and does not associate with any known X,K-ATPase alpha subunit., Crambert G., Biochemistry. May 28, 2002; 41 (21): 6723-33.

???pagination.result.page??? 1 2 ???pagination.result.next???