Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4274) Expression Attributions Wiki
XB-ANAT-170

Papers associated with muscle (and nav1)

Limit to papers also referencing gene:
Show all muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Extracellular cysteine disulfide bond break at Cys122 disrupts PIP 2 -dependent Kir2.1 channel function and leads to arrhythmias in Andersen-Tawil Syndrome., Cruz FM., bioRxiv. June 8, 2023;


Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors., Angsutararux P., J Gen Physiol. May 1, 2023; 155 (5):


The G213D variant in Nav1.5 alters sodium current and causes an arrhythmogenic phenotype resulting in a multifocal ectopic Purkinje-related premature contraction phenotype in human-induced pluripotent stem cell-derived cardiomyocytes., Calloe K., Europace. December 9, 2022; 24 (12): 2015-2027.                


Identification of SCN5a p.C335R Variant in a Large Family with Dilated Cardiomyopathy and Conduction Disease., Sedaghat-Hamedani F., Int J Mol Sci. November 30, 2021; 22 (23):             


Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels., Kawai T., J Biol Chem. January 1, 2021; 296 100783.                  


Action potentials in Xenopus oocytes triggered by blue light., Walther F., J Gen Physiol. May 4, 2020; 152 (5):                               


Polyunsaturated fatty acid analogues differentially affect cardiac NaV, CaV, and KV channels through unique mechanisms., Bohannon BM., Elife. March 24, 2020; 9                                                               


Myasthenic congenital myopathy from recessive mutations at a single residue in NaV1.4., Elia N., Neurology. March 26, 2019; 92 (13): e1405-e1415.            


Molecular charge associated with antiarrhythmic actions in a series of amino-2-cyclohexyl ester derivatives., Pugsley MK., Eur J Pharmacol. February 5, 2019; 844 241-252.


Spider toxin inhibits gating pore currents underlying periodic paralysis., Männikkö R., Proc Natl Acad Sci U S A. April 24, 2018; 115 (17): 4495-4500.          


Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET., Kubota T., Proc Natl Acad Sci U S A. March 7, 2017; 114 (10): E1857-E1865.


Fast-onset lidocaine block of rat NaV1.4 channels suggests involvement of a second high-affinity open state., Gingrich KJ., Biochim Biophys Acta. June 1, 2016; 1858 (6): 1175-88.


Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy., Freyermuth F., Nat Commun. April 11, 2016; 7 11067.              


Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy., Zaharieva IT., Brain. March 1, 2016; 139 (Pt 3): 674-91.              


Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells., Law R., Plant Physiol. October 15, 2015; 12 22.            


Voltage-dependent blockade by bupivacaine of cardiac sodium channels expressed in Xenopus oocytes., Zhang H., Neurosci Bull. August 1, 2014; 30 (4): 697-710.


Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis., Mi W., J Gen Physiol. August 1, 2014; 144 (2): 137-45.        


Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains., Pless SA., J Gen Physiol. May 1, 2014; 143 (5): 645-56.              


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I)., Silva JR., J Gen Physiol. March 1, 2013; 141 (3): 323-34.            


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4., Silva JR., J Gen Physiol. March 1, 2013; 141 (3): 309-21.                


A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors., Favreau P., Br J Pharmacol. July 1, 2012; 166 (5): 1654-68.


18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels., Du YM., Acta Pharmacol Sin. June 1, 2012; 33 (6): 752-60.            


A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype., Gosselin-Badaroudine P., PLoS One. January 1, 2012; 7 (5): e38331.          


Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics., Arcisio-Miranda M., J Gen Physiol. November 1, 2010; 136 (5): 541-54.                


Blocking effect of methylflavonolamine on human Na(V)1.5 channels expressed in Xenopus laevis oocytes and on sodium currents in rabbit ventricular myocytes., Fan XR., Acta Pharmacol Sin. March 1, 2010; 31 (3): 297-306.                  


Electric currents in Xenopus tadpole tail regeneration., Reid B., Dev Biol. November 1, 2009; 335 (1): 198-207.                


Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the beta1 subunit., Webb J., Pflugers Arch. April 1, 2009; 457 (6): 1253-63.


Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel., Zhang Y., Acta Physiol (Oxf). December 1, 2008; 194 (4): 311-23.            


Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels., Campos FV., J Gen Physiol. August 1, 2008; 132 (2): 251-63.                      


Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation., Lee JH., Brain Res. April 8, 2008; 1203 61-7.


A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore., Struyk AF., J Gen Physiol. July 1, 2007; 130 (1): 11-20.          


Solution structure of Jingzhaotoxin-III, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels., Liao Z., Toxicon. July 1, 2007; 50 (1): 135-43.


A cation-pi interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block., Santarelli VP., J Biol Chem. March 16, 2007; 282 (11): 8044-51.


Isolation and structure-activity of mu-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels., Lewis RJ., Mol Pharmacol. March 1, 2007; 71 (3): 676-85.


A mutation in the local anaesthetic binding site abolishes toluene effects in sodium channels., Gauthereau MY., Eur J Pharmacol. December 28, 2005; 528 (1-3): 17-26.


Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction., Alvarez JL., Cardiovasc Res. September 1, 2004; 63 (4): 653-61.


Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit., Qin N., Eur J Biochem. December 1, 2003; 270 (23): 4762-70.


Inhibition of cardiac sodium currents by toluene exposure., Cruz SL., Br J Pharmacol. October 1, 2003; 140 (4): 653-60.

???pagination.result.page??? 1