Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (209) Expression Attributions Wiki
XB-ANAT-769

Papers associated with retinal ganglion cell layer

Limit to papers also referencing gene:
Results 1 - 50 of 209 results

Page(s): 1 2 3 4 5 Next

Sort Newest To Oldest Sort Oldest To Newest

Regeneration from three cellular sources and ectopic mini-retina formation upon neurotoxic retinal degeneration in Xenopus., Parain K., Glia. April 1, 2024; 72 (4): 759-776.                            


Mass spectrometry dataset of LC-MS lipidomics analysis of Xenopus laevis optic nerve., Neag E., Data Brief. August 1, 2023; 49 109313.        


Dual leucine zipper kinase is necessary for retinal ganglion cell axonal regeneration in Xenopus laevis., Fague L., PNAS Nexus. May 1, 2023; 2 (5): pgad109.


BDNF signaling in correlation-dependent structural plasticity in the developing visual system., Kutsarova E., PLoS Biol. April 1, 2023; 21 (4): e3002070.          


Ocular microvasculature in adult Xenopus laevis: Scanning electron microscopy of vascular casts., Lametschwandtner A., J Morphol. March 1, 2023; 284 (3): e21561.                            


Surgical Methods in Postmetamorphic Xenopus laevis: Optic Nerve Crush Injury Model., Feidler AM., Methods Mol Biol. January 1, 2023; 2636 205-219.      


Cell-autonomous and differential endocannabinoid signaling impacts the development of presynaptic retinal ganglion cell axon connectivity in vivo., Del Rio R., Front Synaptic Neurosci. January 1, 2023; 15 1176864.


Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina., Man LLH., Front Cell Neurosci. January 1, 2023; 17 1266945.                  


Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development., Basakis P., MicroPubl Biol. January 1, 2023; 2023


Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis., Choi B., Mol Cells. November 30, 2022; 45 (11): 846-854.


Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy., Van de Sompele S., Am J Hum Genet. November 3, 2022; 109 (11): 2029-2048.                                    


DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target., Santos RA., Neural Dev. April 15, 2022; 17 (1): 5.              


Influence of Sox protein SUMOylation on neural development and regeneration., Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.      


Topographic map formation and the effects of NMDA receptor blockade in the developing visual system., Li VJ., Proc Natl Acad Sci U S A. February 22, 2022; 119 (8):                                   


Cannabinoid Receptor Type 1 regulates growth cone filopodia and axon dispersion in the optic tract of Xenopus laevis tadpoles., Elul T., Eur J Neurosci. February 1, 2022; 55 (4): 989-1001.


Proteomic screen reveals diverse protein transport between connected neurons in the visual system., Schiapparelli LM., Cell Rep. January 25, 2022; 38 (4): 110287.                                  


Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole., Pratt KG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Sodium-calcium exchanger mediates sensory-evoked glial calcium transients in the developing retinotectal system., Benfey NJ., Cell Rep. October 5, 2021; 37 (1): 109791.                      


Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation., Dobramysl U., J Cell Biol. April 5, 2021; 220 (4):                                       


Microglial trogocytosis and the complement system regulate axonal pruning in vivo., Lim TK., Elife. March 16, 2021; 10                     


Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M., STAR Protoc. January 8, 2021; 2 (1): 100252.                


Imaging the Dynamic Branching and Synaptic Differentiation of Xenopus Optic Axons In Vivo., Santos RA., Cold Spring Harb Protoc. November 2, 2020; 2020 (11):


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


NMDARs Translate Sequential Temporal Information into Spatial Maps., Hiramoto M., iScience. June 26, 2020; 23 (6): 101130.                


Stentian structural plasticity in the developing visual system., Rahman TN., Proc Natl Acad Sci U S A. May 19, 2020; 117 (20): 10636-10638.    


Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits., Corradi E., EMBO J. March 16, 2020; 39 (6): e102513.                            


On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons., Shigeoka T., Cell Rep. December 10, 2019; 29 (11): 3605-3619.e10.                


Volume sensing in the transient receptor potential vanilloid 4 ion channel is cell type-specific and mediated by an N-terminal volume-sensing domain., Toft-Bertelsen TL., J Biol Chem. November 29, 2019; 294 (48): 18421-18434.                


Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons., Koppers M., Elife. November 20, 2019; 8                       


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. April 9, 2019; 6 (2):                   


Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring., Cagnetta R., Mol Cell. February 7, 2019; 73 (3): 474-489.e5.                


Comparisons of SOCS mRNA and protein levels in Xenopus provide insights into optic nerve regenerative success., Priscilla R., Brain Res. February 1, 2019; 1704 150-160.          


Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain., Thompson AJ., Elife. January 15, 2019; 8                     


Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons., Cioni JM., Cell. January 10, 2019; 176 (1-2): 56-72.e15.                              


Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons., Turner-Bridger B., Proc Natl Acad Sci U S A. October 9, 2018; 115 (41): E9697-E9706.            


DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring., Santos RA., Neural Dev. September 15, 2018; 13 (1): 22.                  


Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome., Cagnetta R., Neuron. July 11, 2018; 99 (1): 29-46.e4.                                            


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB., Dev Biol. May 1, 2018; 437 (1): 27-40.                  


Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons., Liu Z., J Vis Exp. March 15, 2018; (133):


Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function., Cioni JM., Neuron. March 7, 2018; 97 (5): 1078-1093.e6.                            


Cue-Polarized Transport of β-actin mRNA Depends on 3'UTR and Microtubules in Live Growth Cones., Leung KM., Front Cell Neurosci. January 1, 2018; 12 300.                


Filopodyan: An open-source pipeline for the analysis of filopodia., Urbančič V., J Cell Biol. October 2, 2017; 216 (10): 3405-3422.            


Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina., Bessodes N., Neural Dev. September 1, 2017; 12 (1): 16.                


RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo., Wong HH., Neuron. August 16, 2017; 95 (4): 852-868.e8.                


The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization In Vivo., Van Horn MR., J Neurosci. June 28, 2017; 37 (26): 6277-6288.                


Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus., Martinez-De Luna RI., Dev Biol. June 15, 2017; 426 (2): 219-235.                      


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB., Dev Biol. June 15, 2017; 426 (2): 360-373.              


Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation., Ledford KL., Dev Biol. June 15, 2017; 426 (2): 418-428.                        


The Visual Cycle in the Inner Retina of Chicken and the Involvement of Retinal G-Protein-Coupled Receptor (RGR)., Díaz NM., Mol Neurobiol. May 1, 2017; 54 (4): 2507-2517.

Page(s): 1 2 3 4 5 Next