Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (38) Expression Attributions Wiki
XB-ANAT-194

Papers associated with sacculus

Limit to papers also referencing gene:
Results 1 - 38 of 38 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Morphometric study of the vestibuloauditory organ of the African clawed frog, Xenopus laevis., Homma T., Anat Histol Embryol. July 1, 2022; 51 (4): 514-523.


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH., Front Neuroanat. January 1, 2021; 15 722374.                                                    


Acute consequences of a unilateral VIIIth nerve transection on vestibulo-ocular and optokinetic reflexes in Xenopus laevis tadpoles., Soupiadou P., J Neurol. December 1, 2020; 267 (Suppl 1): 62-75.            


An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs., Wang Z., Neural Plast. July 2, 2020; 2020 3570732.


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM., Dis Model Mech. March 3, 2020; 13 (3):                                               


Topologically correct central projections of tetrapod inner ear afferents require Fzd3., Duncan JS., Sci Rep. July 16, 2019; 9 (1): 10298.              


Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties., Gordy C., Dev Neurobiol. November 1, 2018; 78 (11): 1064-1080.                  


Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear., Zarei S., Dev Neurobiol. December 1, 2017; 77 (12): 1385-1400.                


no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development., Nakayama T., Dev Biol. June 15, 2017; 426 (2): 472-486.                          


RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance., Ramírez-Gordillo D., BMC Res Notes. November 18, 2015; 8 691.      


Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis., Branoner F., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.            


The frog inner ear: picture perfect?, Mason MJ., J Assoc Res Otolaryngol. April 1, 2015; 16 (2): 171-88.


Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs., Elliott KL., Sci Rep. February 9, 2015; 5 8338.                


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations., Lambert FM., J Neurosci. April 17, 2013; 33 (16): 6845-56.                


The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice., Shin JB., J Neurosci. July 21, 2010; 30 (29): 9683-94.              


Long-term consequences of Sox9 depletion on inner ear development., Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium., Calvert PD., J Gen Physiol. March 1, 2010; 135 (3): 173-96.                          


Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord., Elliott KL., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.          


Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus., Lambert FM., J Neurosci. October 7, 2009; 29 (40): 12477-83.      


Localization of Kv2.2 protein in Xenopus laevis embryos and tadpoles., Gravagna NG., J Comp Neurol. October 10, 2008; 510 (5): 508-24.                        


Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus., Lambert FM., J Neurosci. August 6, 2008; 28 (32): 8086-95.                  


Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear., Quick QA., Int J Dev Biol. January 1, 2007; 51 (3): 201-9.          


Inner ear formation during the early larval development of Xenopus laevis., Quick QA., Dev Dyn. November 1, 2005; 234 (3): 791-801.      


The role of Pax2 in mouse inner ear development., Burton Q., Dev Biol. August 1, 2004; 272 (1): 161-75.


Molecular cloning of otoconin-22 complementary deoxyribonucleic acid in the bullfrog endolymphatic sac: effect of calcitonin on otoconin-22 messenger ribonucleic acid levels., Yaoi Y., Endocrinology. August 1, 2003; 144 (8): 3287-96.  


Three-dimensional morphology of inner ear development in Xenopus laevis., Bever MM., Dev Dyn. July 1, 2003; 227 (3): 422-30.            


The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway., Merlo GR., Dev Biol. August 1, 2002; 248 (1): 157-69.


Identification of genes expressed in the Xenopus inner ear., Serrano EE., Cell Mol Biol (Noisy-le-grand). November 1, 2001; 47 (7): 1229-39.


Origins of inner ear sensory organs revealed by fate map and time-lapse analyses., Kil SH., Dev Biol. May 15, 2001; 233 (2): 365-79.              


Immunocytochemical localization of secretory phospholipase A(2)-like protein in the pituitary gland and surrounding tissue of the bullfrog, Rana catesbeiana., Yaoi Y., J Histochem Cytochem. May 1, 2001; 49 (5): 631-8.  


Development of the Xenopus laevis VIIIth cranial nerve: increase in number and area of axons of the saccular and papillar branches., López-Anaya VL., J Morphol. December 1, 1997; 234 (3): 263-76.


Scanning electron microscopic study of amphibians otoconia., Kido T., Auris Nasus Larynx. April 1, 1997; 24 (2): 125-30.


Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis., Hellmann B., Brain Behav Evol. January 1, 1996; 47 (4): 185-94.


Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development., Díaz ME., Hear Res. November 1, 1995; 91 (1-2): 33-42.


Calcium-binding proteins in the inner ear of Xenopus laevis (Daudin)., Kerschbaum HH., Dev Biol. July 16, 1993; 617 (1): 43-9.        


Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight., Briegleb W., Adv Space Res. January 1, 1986; 6 (12): 151-6.

Page(s): 1