Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5512) Expression Attributions Wiki
XB-ANAT-498

Papers associated with viscus (and mpo)

Limit to papers also referencing gene:
Show all viscus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Identification and characterization of myeloid cells localized in the tadpole liver cortex in Xenopus laevis., Maéno M., Dev Comp Immunol. April 8, 2024; 105178.


Isolation and evaluation of erythroid progenitors in the livers of larval, froglet, and adult Xenopus tropicalis., Omata K., Biol Open. August 15, 2023; 12 (8):                 


Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax., Wang S., Cell Biosci. February 23, 2023; 13 (1): 40.              


A myeloperoxidase enhancer drives myeloid cell-specific labeling in a transgenic frog line., Yamada-Kondo S., Dev Growth Differ. September 1, 2022; 64 (7): 362-367.        


Pou5f3.3 is involved in establishment and maintenance of hematopoietic cells during Xenopus development., Ezawa M., Tissue Cell. October 1, 2021; 72 101531.


Amphibian (Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis., Koubourli DV., Front Immunol. September 12, 2018; 9 2058.                  


Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis., Imai Y., Cell Tissue Res. August 1, 2017; 369 (2): 341-352.


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.                    


The unique myelopoiesis strategy of the amphibian Xenopus laevis., Yaparla A., Dev Comp Immunol. October 1, 2016; 63 136-43.


The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly., Smith SJ., Dev Biol. August 15, 2016; 416 (2): 373-88.                                                      


Thrombopoietin induces production of nucleated thrombocytes from liver cells in Xenopus laevis., Tanizaki Y., Sci Rep. December 21, 2015; 5 18519.                                


Nkx2.5 is involved in myeloid cell differentiation at anterior ventral blood islands in the Xenopus embryo., Sakata H., Dev Growth Differ. October 1, 2014; 56 (8): 544-54.              


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


Regulation of primitive hematopoiesis by class I histone deacetylases., Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.              


The POZ-ZF transcription factor Kaiso (ZBTB33) induces inflammation and progenitor cell differentiation in the murine intestine., Chaudhary R., PLoS One. January 1, 2013; 8 (9): e74160.                


Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors., Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.                      


Cytochemical and immunocytochemical characterization of blood cells and immunohistochemical analysis of spleen cells from 2 species of frog, Rana (Aquarana) catesbeiana and Xenopus laevis., Bricker NK., Vet Clin Pathol. September 1, 2012; 41 (3): 353-61.


Identification of the human PMR1 mRNA endonuclease as an alternatively processed product of the gene for peroxidasin-like protein., Gu SQ., RNA. June 1, 2012; 18 (6): 1186-96.


Uberon, an integrative multi-species anatomy ontology., Mungall CJ., Genome Biol. January 23, 2012; 13 (1): R5.          


Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus., Smith SJ., Mech Dev. January 1, 2011; 128 (5-6): 303-15.                            


Xenopus er71 is involved in vascular development., Neuhaus H., Dev Dyn. December 1, 2010; 239 (12): 3436-45.            


Identification and expression of ventrally associated leucine-zipper (VAL) in Xenopus embryo., Saito Y., Int J Dev Biol. January 1, 2010; 54 (1): 203-8.                


A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis., Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.                            


Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development., Tomlinson ML., Mech Dev. January 1, 2008; 125 (11-12): 1059-70.                  


Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis., Inui M., Dev Biol. October 1, 2006; 298 (1): 188-200.                


Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo., Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.                    


An endonuclease activity similar to Xenopus PMR1 catalyzes the degradation of normal and nonsense-containing human beta-globin mRNA in erythroid cells., Bremer KA., RNA. September 1, 2003; 9 (9): 1157-67.


XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus., Smith SJ., Mech Dev. September 1, 2002; 117 (1-2): 173-86.                    


Polysomal ribonuclease 1 exists in a latent form on polysomes prior to estrogen activation of mRNA decay., Cunningham KS., Nucleic Acids Res. March 1, 2001; 29 (5): 1156-62.


CaM kinase IV regulates lineage commitment and survival of erythroid progenitors in a non-cell-autonomous manner., Wayman GA., J Cell Biol. November 13, 2000; 151 (4): 811-24.                              


A polysomal ribonuclease involved in the destabilization of albumin mRNA is a novel member of the peroxidase gene family., Chernokalskaya E., RNA. December 1, 1998; 4 (12): 1537-48.

???pagination.result.page??? 1