Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3631) Expression Attributions Wiki
XB-ANAT-523

Papers associated with anterior (and shroom3)

Limit to papers also referencing gene:
Show all anterior papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Mechanical control of neural plate folding by apical domain alteration., Matsuda M., Nat Commun. December 20, 2023; 14 (1): 8475.                                    


In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure., Baldwin AT., Dev Biol. November 1, 2022; 491 105-112.                  


Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure., Christodoulou N., Development. July 1, 2022; 149 (13):                 


Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure., Baldwin AT., Elife. March 4, 2022; 11                                   


Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development., Christodoulou N., Front Cell Dev Biol. January 1, 2022; 10 1091629.              


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 26, 2021; 148 (2):                                   


Identification of the centrosomal maturation factor SSX2IP as a Wtip-binding partner by targeted proximity biotinylation., Reis AH., PLoS One. January 1, 2021; 16 (10): e0259068.              


The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation., Popov IK., Development. December 12, 2018; 145 (24):             


Models of convergent extension during morphogenesis., Shindo A., Wiley Interdiscip Rev Dev Biol. January 1, 2018; 7 (1):                 


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus., Inoue Y., Biomech Model Mechanobiol. December 1, 2016; 15 (6): 1733-1746.              


GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure., Itoh K., J Cell Sci. June 1, 2014; 127 (Pt 11): 2542-53.              


Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure., Ossipova O., Nat Commun. May 13, 2014; 5 3734.            


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets., Lee C, Lee C, Lee C., Dev Dyn. June 1, 2009; 238 (6): 1480-91.                            


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    


Shroom induces apical constriction and is required for hingepoint formation during neural tube closure., Haigo SL., Curr Biol. December 16, 2003; 13 (24): 2125-37.                          

???pagination.result.page??? 1