Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14972) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and tfap2a)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Transcription factor AP-2 is tissue-specific in Xenopus and is closely related or identical to keratin transcription factor 1 (KTF-1)., Snape AM., Development. September 1, 1991; 113 (1): 283-93.


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


v-erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis., Schuh TJ., Development. November 1, 1993; 119 (3): 785-98.                  


Upregulation of AP-2 in the skin of Xenopus laevis during thyroid hormone-induced metamorphosis., French RP., Dev Genet. January 1, 1994; 15 (4): 356-65.


Identification of a germ-cell-specific transcriptional repressor in the promoter of Tctex-1., O'Neill MJ., Development. February 1, 1995; 121 (2): 561-8.


Tissue-specific in vivo protein-DNA interactions at the promoter region of the Xenopus 63 kDa keratin gene during metamorphosis., Warshawsky D., Nucleic Acids Res. November 11, 1995; 23 (21): 4502-9.


Diadenosine polyphosphate-activated inward and outward currents in follicular oocytes of Xenopus laevis., Pintor J., Life Sci. January 1, 1996; 59 (12): PL179-84.


Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds., Shen H., Dev Biol. August 15, 1997; 188 (2): 248-66.


Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a., Saint-Jeannet JP., Proc Natl Acad Sci U S A. December 9, 1997; 94 (25): 13713-8.            


Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis., Chen H., Nature. August 20, 1998; 394 (6695): 793-7.


Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells., Hussain NK., J Biol Chem. May 28, 1999; 274 (22): 15671-7.


Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning., Bradley L., Dev Biol. November 1, 2000; 227 (1): 118-32.                    


Mercuric ion inhibition of eukaryotic transcription factor binding to DNA., Rodgers JS., Biochem Pharmacol. June 15, 2001; 61 (12): 1543-50.


Cloning and characterization of the cDNA and gene encoding Xenopus laevis osteocalcin., Viegas CS., Gene. May 1, 2002; 289 (1-2): 97-107.                


Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus., Luo T., Dev Biol. May 1, 2002; 245 (1): 136-44.          


Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis., Crump D., Environ Health Perspect. December 1, 2002; 110 (12): 1199-205.


Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos., Gotoh M., Dev Genes Evol. July 1, 2003; 213 (7): 363-7.


Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis., Zhou Y., J Biol Chem. November 7, 2003; 278 (45): 44584-92.                


Inhibition of mesodermal fate by Xenopus HNF3beta/FoxA2., Suri C., Dev Biol. January 1, 2004; 265 (1): 90-104.              


A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals., Heeg-Truesdell E., Birth Defects Res C Embryo Today. June 1, 2004; 72 (2): 124-39.      


Induction of the neural crest and the opportunities of life on the edge., Huang X., Dev Biol. November 1, 2004; 275 (1): 1-11.


Developmental expression of Xenopus fragile X mental retardation-1 gene., Lim JH., Int J Dev Biol. January 1, 2005; 49 (8): 981-4.        


Regulatory targets for transcription factor AP2 in Xenopus embryos., Luo T., Dev Growth Differ. August 1, 2005; 47 (6): 403-13.                    


FoxN3 is required for craniofacial and eye development of Xenopus laevis., Schuff M., Dev Dyn. January 1, 2007; 236 (1): 226-39.                            


Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development., Luo T., Development. April 1, 2007; 134 (7): 1279-89.      


CVAK104 is a novel regulator of clathrin-mediated SNARE sorting., Borner GH., Traffic. July 1, 2007; 8 (7): 893-903.            


Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution., Hoffman TL., J Exp Zool B Mol Dev Evol. September 15, 2007; 308 (5): 679-91.


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm., Hong CS., Development. December 1, 2008; 135 (23): 3903-10.          


Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos., Sabel JL., Dev Biol. January 1, 2009; 325 (1): 249-62.                            


Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis., Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.          


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


A requirement for epsin in mitotic membrane and spindle organization., Liu Z., J Cell Biol. August 24, 2009; 186 (4): 473-80.          


Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1., Schneider M., Development. December 1, 2010; 137 (23): 4073-81.                        


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network., de Crozé N., Proc Natl Acad Sci U S A. January 4, 2011; 108 (1): 155-60.        


Alternative TFAP2A isoforms have distinct activities in breast cancer., Berlato C., Breast Cancer Res. March 4, 2011; 13 (2): R23.              


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Identification and characterization of the RLIP/RALBP1 interacting protein Xreps1 in Xenopus laevis early development., Boissel L., PLoS One. January 1, 2012; 7 (3): e33193.                  


Ventx factors function as Nanog-like guardians of developmental potential in Xenopus., Scerbo P., PLoS One. January 1, 2012; 7 (5): e36855.              


Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling., Mikryukov A., PLoS One. January 1, 2012; 7 (9): e43330.                


The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus., Bisson N., Cell Cycle. April 1, 2012; 11 (7): 1316-24.


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest., Koehler A., Dev Biol. November 1, 2013; 383 (1): 132-45.                        

???pagination.result.page??? 1 2 ???pagination.result.next???