Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (58) Expression Attributions Wiki
XB-ANAT-3309

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

An archetype and scaling of developmental tissue dynamics across species., Morishita Y., Nat Commun. December 11, 2023; 14 (1): 8199.                              


Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                


Effects of Development on Bone Mineral Density and Mechanical Properties in the Aquatic Frog, Xenopus Laevis, and a Terrestrial Frog, Lithobates Catesbianus., Kinsey CT., Integr Comp Biol. September 15, 2023; 63 (3): 705-713.        


Isolation and evaluation of erythroid progenitors in the livers of larval, froglet, and adult Xenopus tropicalis., Omata K., Biol Open. August 15, 2023; 12 (8):                 


Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis)., Shan Z., J Anat. January 28, 2023;                               


The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  


Diversity of cortical bone morphology in anuran amphibians., Kondo Y., Dev Growth Differ. January 1, 2023; 65 (1): 16-22.                  


Intravital staining to detect mineralization in Xenopus tropicalis during and after metamorphosis., Nakajima K., Dev Growth Differ. September 1, 2022; 64 (7): 368-378.              


Characteristic Distribution of Hematopoietic Cells in Bone Marrow of Xenopus Laevis., Morita S., Bull Tokyo Dent Coll. September 8, 2021; 62 (3): 171-180.


Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis., Otsuka-Yamaguchi R., Stem Cell Res. May 1, 2021; 53 102341.          


Homozygous Null TBX4 Mutations Lead to Posterior Amelia with Pelvic and Pulmonary Hypoplasia., Kariminejad A., Am J Hum Genet. December 5, 2019; 105 (6): 1294-1301.        


Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver., Yaparla A., Front Immunol. April 4, 2019; 10 3015.              


Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb., Herrera-Rincon C., Cell Rep. November 6, 2018; 25 (6): 1593-1609.e7.                            


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis., Nalesso G., Ann Rheum Dis. January 1, 2017; 76 (1): 218-226.              


Xenopus Limb bud morphogenesis., Keenan SR., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis., Tsutsumi R., Regeneration (Oxf). February 1, 2016; 3 (1): 26-38.                    


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration., Hayashi S., Dev Biol. October 15, 2015; 406 (2): 271-82.              


Skeletal callus formation is a nerve-independent regenerative response to limb amputation in mice and Xenopus., Miura S., Regeneration (Oxf). August 26, 2015; 2 (4): 202-16.              


Implication of two different regeneration systems in limb regeneration., Makanae A., Regeneration (Oxf). August 29, 2014; 1 (3): 1-9.            


Ectopic blastema induction by nerve deviation and skin wounding: a new regeneration model in Xenopus laevis., Mitogawa K., Regeneration (Oxf). May 28, 2014; 1 (2): 26-36.            


Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration., Hayashi S., Dev Biol. April 1, 2014; 388 (1): 57-67.


G protein-gated inwardly rectifying potassium (KIR3) channels play a primary role in the antinociceptive effect of oxycodone, but not morphine, at supraspinal sites., Nakamura A., Br J Pharmacol. January 1, 2014; 171 (1): 253-64.


The origin of the tetrapod limb: from expeditions to enhancers., Schneider I., Trends Genet. July 1, 2013; 29 (7): 419-26.


Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl., Nacu E., Development. February 1, 2013; 140 (3): 513-8.


Chemical activation of RARβ induces post-embryonically bilateral limb duplication during Xenopus limb regeneration., Cuervo R., Sci Rep. January 1, 2013; 3 1886.      


Cartilage on the move: cartilage lineage tracing during tadpole metamorphosis., Kerney RR., Dev Growth Differ. October 1, 2012; 54 (8): 739-52.                      


γ-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats., Tachikawa M., PLoS One. January 1, 2012; 7 (2): e32557.        


Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c., Kuwahara S., J Med Invest. January 1, 2012; 59 (1-2): 116-26.


Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3., Bhandaru M., Kidney Int. July 1, 2011; 80 (1): 61-7.


Looking proximally and distally: 100 years of limb regeneration and beyond., Stocum DL., Dev Dyn. May 1, 2011; 240 (5): 943-68.                  


The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis., Abu-Daya A., Dev Biol. January 15, 2011; 349 (2): 204-12.                                


Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain., Sopory S., Dev Biol. October 1, 2010; 346 (1): 102-12.                      


Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs., Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.      


Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms., Beck CW., Dev Dyn. June 1, 2009; 238 (6): 1226-48.          


Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer., Villiard E., BMC Evol Biol. September 28, 2007; 7 180.              


Potential ecotoxic effects of polychlorinated biphenyls on Xenopus laevis., Qin ZF., Environ Toxicol Chem. October 1, 2005; 24 (10): 2573-8.


Strategies to reduce variation in Xenopus regeneration studies., Nye HL., Dev Dyn. September 1, 2005; 234 (1): 151-8.  


Expression profile of Xenopus banded hedgehog, a homolog of mouse Indian hedgehog, is related to the late development of endochondral ossification in Xenopus laevis., Moriishi T., Biochem Biophys Res Commun. March 25, 2005; 328 (4): 867-73.


Forelimb spike regeneration in Xenopus laevis: Testing for adaptiveness., Tassava RA., J Exp Zool A Comp Exp Biol. February 1, 2004; 301 (2): 150-9.


Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis., Shimizu-Nishikawa K., Dev Dyn. August 1, 2003; 227 (4): 563-72.              


Hes6 regulates myogenic differentiation., Cossins J., Development. May 1, 2002; 129 (9): 2195-207.          


FGF-10 stimulates limb regeneration ability in Xenopus laevis., Yokoyama H., Dev Biol. May 1, 2001; 233 (1): 72-9.      


Expression patterns of Fgf-8 during development and limb regeneration of the axolotl., Han MJ., Dev Dyn. January 1, 2001; 220 (1): 40-8.        


Adverse developmental and reproductive effects of copper deficiency in Xenopus laevis., Fort DJ., Biol Trace Elem Res. November 1, 2000; 77 (2): 159-72.


Induction of hydroxyapatite resorptive activity in bone marrow cell populations resistant to bafilomycin A1 by a factor with restricted expression to bone and brain, neurochondrin., Ishiduka Y., Biochim Biophys Acta. May 6, 1999; 1450 (1): 92-8.


Multiple digit formation in Xenopus limb bud recombinants., Yokoyama H., Dev Biol. April 1, 1998; 196 (1): 1-10.          


Regulation of HoxA expression in developing and regenerating axolotl limbs., Gardiner DM., Development. June 1, 1995; 121 (6): 1731-41.        

???pagination.result.page??? 1 2 ???pagination.result.next???