Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1640) Expression Attributions Wiki
XB-ANAT-812

Papers associated with liver primordium (and ins)

Limit to papers also referencing gene:
Show all liver primordium papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Impaired liver function in Xenopus tropicalis exposed to benzo[a]pyrene: transcriptomic and metabolic evidence., Regnault C., BMC Genomics. August 8, 2014; 15 666.          


Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification., Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.                  


Endopeptidase cleavage generates a functionally distinct isoform of C1q/tumor necrosis factor-related protein-12 (CTRP12) with an altered oligomeric state and signaling specificity., Wei Z., J Biol Chem. October 19, 2012; 287 (43): 35804-14.


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D., Genesis. March 1, 2012; 50 (3): 271-85.                        


Xenopus staufen2 is required for anterior endodermal organ formation., Bilogan CK., Genesis. March 1, 2012; 50 (3): 251-9.                      


Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes., Pearl EJ., Dev Biol. March 1, 2011; 351 (1): 135-45.                    


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA., Horb LD., Dev Biol. September 15, 2010; 345 (2): 156-69.                


Xenopus pancreas development., Pearl EJ., Dev Dyn. June 1, 2009; 238 (6): 1271-86.          


The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds., Jarikji Z., Development. June 1, 2009; 136 (11): 1791-800.                  


Regulation of pancreatic beta cell mass by neuronal signals from the liver., Imai J., Science. November 21, 2008; 322 (5905): 1250-4.


IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis., Zhu W., Nature. July 17, 2008; 454 (7202): 345-9.                        


The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm., Spagnoli FM., Development. February 1, 2008; 135 (3): 451-61.                                                    


Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas., Jarikji ZH., Dev Biol. April 15, 2007; 304 (2): 786-99.                


Apparent receptor-mediated activation of Ca2+-dependent conductive Cl- transport by shark-derived polyaminosterols., Chernova MN., Am J Physiol Regul Integr Comp Physiol. December 1, 2005; 289 (6): R1644-58.


The FoxO-subclass in Xenopus laevis development., Pohl BS., Gene Expr Patterns. December 1, 2004; 5 (2): 187-92.    


Arylcyanoguanidines as activators of Kir6.2/SUR1K ATP channels and inhibitors of insulin release., Tagmose TM., J Med Chem. June 3, 2004; 47 (12): 3202-11.


Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter., Kajihara M., Biochem Biophys Res Commun. December 19, 2003; 312 (3): 831-42.


Mouse system-N amino acid transporter, mNAT3, expressed in hepatocytes and regulated by insulin-activated and phosphoinositide 3-kinase-dependent signalling., Gu S., Biochem J. May 1, 2003; 371 (Pt 3): 721-31.


Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver., Carbrey JM., Proc Natl Acad Sci U S A. March 4, 2003; 100 (5): 2945-50.


Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos., Chen Y, Chen Y., Mech Dev. March 1, 2003; 120 (3): 277-88.                      


Experimental conversion of liver to pancreas., Horb ME., Curr Biol. January 21, 2003; 13 (2): 105-15.    


Gene expression for a novel protein RGPR-p117 in various species: the stimulation by intracellular signaling factors., Misawa H., J Cell Biochem. January 1, 2002; 87 (2): 188-93.


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    


Downregulation of Hedgehog signaling is required for organogenesis of the small intestine in Xenopus., Zhang J., Dev Biol. January 1, 2001; 229 (1): 188-202.                  


Cloning of cDNA and the gene encoding human hepatocyte nuclear factor (HNF)-3 beta and mutation screening in Japanese subjects with maturity-onset diabetes of the young., Yamada S., Diabetologia. January 1, 2000; 43 (1): 121-4.


Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina., Alarcón C., FEBS Lett. October 9, 1998; 436 (3): 361-6.


Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I., Tanaka M., DNA Cell Biol. October 1, 1998; 17 (10): 859-68.


Organization of the human glucokinase regulator gene GCKR., Hayward BE., Genomics. April 1, 1998; 49 (1): 137-42.


Insulin-like growth factor I receptor messenger expression during oogenesis in Xenopus laevis., Groigno L., Endocrinology. September 1, 1996; 137 (9): 3856-63.


Insulin receptors in Xenopus laevis liver and forelimb regenerates and the effects of local insulin deprivation on regeneration., Cowan BJ., J Exp Zool. October 1, 1995; 273 (2): 130-41.


The two nonallelic insulin-like growth factor-I genes in Xenopus laevis are differentially regulated during development., Perfetti R., Endocrinology. November 1, 1994; 135 (5): 2037-44.


A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation., James PL., J Biol Chem. October 25, 1993; 268 (30): 22305-12.


Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes., Colville CA., Biochem J. September 15, 1993; 294 ( Pt 3) 753-60.


Species and tissue distribution of the regulatory protein of glucokinase., Vandercammen A., Biochem J. September 1, 1993; 294 ( Pt 2) 551-6.


Dephosphorylation of tyrosine phosphorylated synthetic peptides by rat liver phosphotyrosine protein phosphatase isoenzymes., Stefani M., FEBS Lett. July 12, 1993; 326 (1-3): 131-4.


Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes., Thomas HM., Biochem J. March 15, 1993; 290 ( Pt 3) 707-15.


Cleavage specificity and inhibition profile of proteasome isolated from the cytosol of Xenopus oocyte., Takahashi T., J Biochem. February 1, 1993; 113 (2): 225-8.


Sequential activation of MAP kinase activator, MAP kinases, and S6 peptide kinase in intact rat liver following insulin injection., Tobe K., J Biol Chem. October 15, 1992; 267 (29): 21089-97.


Insulin receptors on Xenopus laevis oocytes: effects of injection of ob/ob mouse liver mRNA., Diss DA., J Cell Sci. September 1, 1991; 100 ( Pt 1) 167-71.


Purification and characterisation of the insulin-stimulated protein kinase from rabbit skeletal muscle; close similarity to S6 kinase II., Lavoinne A., Eur J Biochem. August 1, 1991; 199 (3): 723-8.


Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Comparison with insulin receptors from liver and muscle., Hainaut P., Biochem J. February 1, 1991; 273 ( Pt 3) 673-8.


Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide., Price DJ., Proc Natl Acad Sci U S A. October 1, 1990; 87 (20): 7944-8.


Evolution of insulin-like growth factor I (IGF-I): structure and expression of an IGF-I precursor from Xenopus laevis., Kajimoto Y., Mol Endocrinol. February 1, 1990; 4 (2): 217-26.


Reconstitution of an insulin signaling pathway in Xenopus laevis oocytes: coexpression of a mammalian insulin receptor and three different mammalian hexose transporters., Vera JC., Mol Cell Biol. February 1, 1990; 10 (2): 743-51.


Evidence that Xenopus laevis contains two different nonallelic insulin-like growth factor-I genes., Shuldiner AR., Biochem Biophys Res Commun. January 15, 1990; 166 (1): 223-30.


Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA., Permutt MA., Proc Natl Acad Sci U S A. November 1, 1989; 86 (22): 8688-92.


Chicken and Xenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor II., Clairmont KB., J Biol Chem. October 5, 1989; 264 (28): 16390-2.


Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity., Vera JC., Mol Cell Biol. October 1, 1989; 9 (10): 4187-95.

???pagination.result.page??? 1 2 ???pagination.result.next???