Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (352) Expression Attributions Wiki
XB-ANAT-478

Papers associated with pigment cell

Limit to papers also referencing gene:
Results 1 - 50 of 352 results

Page(s): 1 2 3 4 5 6 7 8 Next

Sort Newest To Oldest Sort Oldest To Newest

Inhibition of the serine protease HtrA1 by SerpinE2 suggests an extracellular proteolytic pathway in the control of neural crest migration., Pera EM., Elife. April 18, 2024; 12                                               


Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis., Ran R., Commun Biol. March 5, 2024; 7 (1): 275.                                


Re-examining the evidence that ivermectin induces a melanoma-like state in Xenopus embryos., Hutchison A., Bioessays. January 1, 2024; 46 (1): e2300143.


Generation of translucent Xenopus tropicalis through triple knockout of pigmentation genes., Nakajima K., Dev Growth Differ. December 1, 2023; 65 (9): 591-598.            


Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis., Kitamura K., Sci Rep. August 14, 2023; 13 (1): 13214.                


Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks., Fernández Casafuz AB., Sci Rep. March 11, 2023; 13 (1): 4065.        


Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development., Mohammadparast S., Dev Biol. December 1, 2022; 492 14-24.                                  


Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level., Sonam S., Dev Biol. November 1, 2022; 491 13-30.                                


Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis., Tai X., Front Endocrinol (Lausanne). January 1, 2022; 13 892407.              


Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout., Nakajima K., Dev Dyn. October 1, 2021; 250 (10): 1420-1431.          


Modeling human congenital disorders with neural crest developmental defects using patient-derived induced pluripotent stem cells., Okuno H., Regen Ther. August 24, 2021; 18 275-280.      


Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity., Bertolesi GE., Front Neuroanat. January 1, 2021; 15 784478.      


Microvascular anatomy of ovary and oviduct in the adult African Clawed Toad (Xenopus laevis DAUDIN, 1802)-Histomorphology and scanning electron microscopy of vascular corrosion casts., Lametschwandtner A., Anat Histol Embryol. November 1, 2020; 49 (6): 742-748.            


The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors., Bertolesi GE., J Photochem Photobiol B. November 1, 2020; 212 112024.  


Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis., Nakayama T., Genesis. June 1, 2020; 58 (6): e23366.                


Model systems for regeneration: Xenopus., Phipps LS., Development. March 19, 2020; 147 (6):           


The Flavor Enhancer Maltol Increases Pigment Aggregation in Dermal and Neural Melanophores in Xenopus laevis Tadpoles., Dahora LI., Environ Toxicol Chem. February 1, 2020; 39 (2): 381-395.


Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization., Lauri A., ACS Sens. March 22, 2019; 4 (3): 603-612.            


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. March 22, 2019; 9 (1): 5025.              


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E., Dev Biol. December 15, 2018; 444 (2): 50-61.                


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine., Fukuzawa T., Tissue Cell. October 1, 2018; 54 55-58.


Retraction of rod-like mitochondria during microtubule-dependent transport., De Rossi MC., Biosci Rep. June 29, 2018; 38 (3):           


A wide variety of Mitf transcript variants are expressed in the Xenopus laevis periodic albino mutant., Fukuzawa T., Genes Cells. June 19, 2018;                 


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover., Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.                                


Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons., Juárez-Morales JL., Dev Neurobiol. September 1, 2017; 77 (8): 1007-1020.    


A functional approach to understanding the role of NCKX5 in Xenopus pigmentation., Williams RM., PLoS One. July 10, 2017; 12 (7): e0180465.                  


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. July 1, 2017; 30 (4): 413-423.


Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules., Semenova I., Mol Biol Cell. June 1, 2017; 28 (11): 1418-1425.        


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D., Elife. April 7, 2017; 6                 


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus., Lobo D., Sci Rep. January 27, 2017; 7 41339.          


Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis., Paré JF., NPJ Regen Med. January 1, 2017; 2 15.              


Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. November 1, 2016; 29 (6): 688-701.


Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling., Square T., Sci Rep. September 28, 2016; 6 34282.                          


Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates., Robert J., Viruses. July 6, 2016; 8 (7):     


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. June 1, 2016; 9 (6): 607-20.                                      


Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light., Bertolesi GE., Pigment Cell Melanoma Res. March 1, 2016; 29 (2): 186-98.


Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration., Haynes-Gimore N., Dev Biol. December 15, 2015; 408 (2): 205-12.                


Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection., Paredes R., Dev Biol. December 15, 2015; 408 (2): 213-28.                                              


In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles., Huang YB., PLoS One. October 20, 2015; 10 (10): e0140752.            


Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation., Lobikin M., Sci Signal. October 6, 2015; 8 (397): ra99.


Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport., De Rossi MC., FEBS Lett. September 14, 2015; 589 (19 Pt B): 2763-8.


Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. September 1, 2015; 361 (3): 733-44.                  


Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland., Bertolesi GE., Pigment Cell Melanoma Res. September 1, 2015; 28 (5): 559-71.


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.                


Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis., Choi J., Endocrinology. February 1, 2015; 156 (2): 735-44.            


Melanopsins: Localization and Phototransduction in Xenopus laevis Melanophores., Moraes MN., Photochem Photobiol. January 1, 2015; 91 (5): 1133-41.


Regulation of microtubule-based transport by MAP4., Semenova I., Mol Biol Cell. October 15, 2014; 25 (20): 3119-32.              

Page(s): 1 2 3 4 5 6 7 8 Next