Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (1477) Attributions Wiki
XB-STAGE-5

Papers associated with blastula stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Blood cell and vessel formation following transplantation of activin-treated explants in Xenopus., Nagamine K, Furue M, Fukui A, Matsuda A, Hori T, Asashima M., Biol Pharm Bull. October 1, 2007; 30 (10): 1856-9.


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R., Dev Biol. September 15, 2007; 309 (2): 208-21.              


The role of maternal Activin-like signals in zebrafish embryos., Hagos EG, Fan X, Dougan ST., Dev Biol. September 15, 2007; 309 (2): 245-58.


Interpretation of BMP signaling in early Xenopus development., Simeoni I, Gurdon JB., Dev Biol. August 1, 2007; 308 (1): 82-92.                  


Targeted cell-ablation in Xenopus embryos using the conditional, toxic viral protein M2(H37A)., Smith SJ, Kotecha S, Towers N, Mohun TJ., Dev Dyn. August 1, 2007; 236 (8): 2159-71.


A rapid protocol for whole-mount in situ hybridization on Xenopus embryos., Monsoro-Burq AH., CSH Protoc. August 1, 2007; 2007 pdb.prot4809.


Retinoic acid-inducible G protein-coupled receptors bind to frizzled receptors and may activate non-canonical Wnt signaling., Harada Y, Yokota C, Habas R, Slusarski DC, He X., Biochem Biophys Res Commun. July 13, 2007; 358 (4): 968-75.        


G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo., Tao Q, Tao Q, Nandadasa S, McCrea PD, Heasman J, Wylie C., Development. July 1, 2007; 134 (14): 2651-61.                    


The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning., Sander V, Reversade B, De Robertis EM., EMBO J. June 20, 2007; 26 (12): 2955-65.              


Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings., Furushima K, Yamamoto A, Nagano T, Shibata M, Miyachi H, Abe T, Ohshima N, Kiyonari H, Aizawa S., Dev Biol. June 15, 2007; 306 (2): 480-92.  


ANR5, an FGF target gene product, regulates gastrulation in Xenopus., Chung HA, Yamamoto TS, Ueno N., Curr Biol. June 5, 2007; 17 (11): 932-9.                  


The activity of Pax3 and Zic1 regulates three distinct cell fates at the neural plate border., Hong CS, Saint-Jeannet JP., Mol Biol Cell. June 1, 2007; 18 (6): 2192-202.                


Xeya3 regulates survival and proliferation of neural progenitor cells within the anterior neural plate of Xenopus embryos., Kriebel M, Müller F, Hollemann T., Dev Dyn. June 1, 2007; 236 (6): 1526-34.  


Expression of estrogen induced gene 121-like (EIG121L) during early Xenopus development., Araki T, Kusakabe M, Nishida E., Gene Expr Patterns. June 1, 2007; 7 (6): 666-71.        


Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development., McLin VA, Rankin SA, Zorn AM., Development. June 1, 2007; 134 (12): 2207-17.            


Isolation and differentiation of Xenopus animal cap cells., Ariizumi T, Takahashi S, Chan TC, Ito Y, Michiue T, Asashima M., Curr Protoc Stem Cell Biol. June 1, 2007; Chapter 1 Unit 1D.5.


Ectodermal (Animal Cap) Layer Separations in Xenopus laevis., Sive HL, Grainger RM, Harland RM., CSH Protoc. June 1, 2007; 2007 pdb.prot4746.


Animal Cap Isolation from Xenopus laevis., Sive HL, Grainger RM, Harland RM., CSH Protoc. June 1, 2007; 2007 pdb.prot4744.


Soluble tubulin complexes, gamma-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo., Liu J, Lessman CA., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2007; 147 (1): 56-73.


Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan., Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Da Silva C, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S., PLoS One. April 18, 2007; 2 (4): e374.              


Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo., Momose T, Houliston E., PLoS Biol. April 1, 2007; 5 (4): e70.                


SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation., Fukui A, Goto T, Kitamoto J, Homma M, Asashima M., Biochem Biophys Res Commun. March 9, 2007; 354 (2): 472-7.        


FGF4 regulates blood and muscle specification in Xenopus laevis., Isaacs HV, Deconinck AE, Pownall ME., Biol Cell. March 1, 2007; 99 (3): 165-73.


Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo., Yamamoto Y, Grubisic K, Oelgeschläger M., Differentiation. March 1, 2007; 75 (3): 235-45.          


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division., Ramis JM, Collart C, Smith JC., PLoS One. February 14, 2007; 2 (2): e213.      


Xenopus as a model system for vertebrate heart development., Warkman AS, Krieg PA., Semin Cell Dev Biol. February 1, 2007; 18 (1): 46-53.      


Two-dimensional and three-dimensional time-lapse microscopic magnetic resonance imaging of Xenopus gastrulation movements using intrinsic tissue-specific contrast., Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE., Dev Dyn. February 1, 2007; 236 (2): 494-501.


Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin., Kofron M, Birsoy B, Houston D, Tao Q, Tao Q, Wylie C, Heasman J., Development. February 1, 2007; 134 (3): 503-13.      


Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation., Yun CH, Choi SC, Park E, Kim SJ, Chung AS, Lee HK, Lee HK, Lee HJ, Lee HJ, Han JK., Development. February 1, 2007; 134 (4): 769-77.              


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A, Kofron M, Zorn AM, Bajzer M, Haque M, Heasman J, Wylie CC., Development. February 1, 2007; 134 (4): 779-88.                  


RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte., Nath K, Elinson RP., Gene Expr Patterns. January 1, 2007; 7 (1-2): 197-201.        


XSu(H)2 is an essential factor for gene expression and morphogenesis of the Xenopus gastrula embryo., Ito M, Katada T, Miyatani S, Kinoshita T., Int J Dev Biol. January 1, 2007; 51 (1): 27-36.            


In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards., Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Lee C, Kang D, Lee W, Cheong C., Differentiation. January 1, 2007; 75 (1): 84-92.        


Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis., Suzawa K, Yukita A, Hayata T, Goto T, Danno H, Michiue T, Cho KW, Asashima M., Int J Dev Biol. January 1, 2007; 51 (3): 183-90.              


Expression and regulation of Xenopus CRMP-4 in the developing nervous system., Souopgui J, Klisch TJ, Pieler T, Henningfeld KA., Int J Dev Biol. January 1, 2007; 51 (4): 339-43.        


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H, Rebbert ML, Dawid IB., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


[Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos], Belousov LV, Korvin-Pavlovskaia EG, Luchinskaia NN, Kornikova ES., Ontogenez. January 1, 2007; 38 (3): 192-204.


The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction., Takebayashi-Suzuki K, Arita N, Murasaki E, Suzuki A., Mech Dev. January 1, 2007; 124 (11-12): 840-55.    


[Ultraweak emissions of the developing Xenopus laevis eggs and embryos], Volodiaev IV, Belousov LV., Ontogenez. January 1, 2007; 38 (5): 386-93.


RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes., Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M., J Biol Chem. December 29, 2006; 281 (52): 40096-106.                


Xenopus Dab2 is required for embryonic angiogenesis., Cheong SM, Choi SC, Han JK., BMC Dev Biol. December 19, 2006; 6 63.                  


Neurotrophin receptor homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development., Knapp D, Messenger N, Ahmed Rana A, Smith JC., Dev Biol. December 15, 2006; 300 (2): 554-69.                  


Two-dimensional morphogen gradient in Xenopus: boundary formation and real-time transduction response., Kinoshita T, Jullien J, Gurdon JB., Dev Dyn. December 1, 2006; 235 (12): 3189-98.


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T, Takehara S, Takahashi M, Aizawa S, Yamamoto A., Development. December 1, 2006; 133 (23): 4643-54.                  


FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development., Steiner AB, Engleka MJ, Lu Q, Piwarzyk EC, Yaklichkin S, Lefebvre JL, Walters JW, Pineda-Salgado L, Labosky PA, Kessler DS., Development. December 1, 2006; 133 (24): 4827-38.                    


FGF signal transduction and the regulation of Cdx gene expression., Keenan ID, Sharrard RM, Isaacs HV., Dev Biol. November 15, 2006; 299 (2): 478-88.    


Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development., Webb SE, Miller AL., Biochim Biophys Acta. November 1, 2006; 1763 (11): 1192-208.


Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity., Dal-Pra S, Fürthauer M, Van-Celst J, Thisse B, Thisse C., Dev Biol. October 15, 2006; 298 (2): 514-26.


Function of the two Xenopus smad4s in early frog development., Chang C, Brivanlou AH, Harland RM., J Biol Chem. October 13, 2006; 281 (41): 30794-803.                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???