Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14682) Expression Attributions Wiki
XB-ANAT-213

Papers associated with central nervous system (and grin1)

Limit to papers also referencing gene:
Show all central nervous system papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis., Roza M., Sci Total Environ. May 1, 2024; 923 170949.          


Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC., Expert Opin Drug Discov. February 1, 2024; 19 (2): 173-187.      


Recurrent seizure-related GRIN1 variant: Molecular mechanism and targeted therapy., Xu Y., Ann Clin Transl Neurol. July 1, 2021; 8 (7): 1480-1494.            


Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders., Tang W., Neuropharmacology. October 15, 2020; 177 108247.


Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases., Li J., Hum Mutat. December 1, 2019; 40 (12): 2393-2413.


An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups., Perszyk R., Elife. May 24, 2018; 7                                                                         


All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class., Castillo-Gómez E., Mol Psychiatry. December 1, 2017; 22 (12): 1776-1784.


Lin28 proteins are required for germ layer specification in Xenopus., Faas L., Development. March 1, 2013; 140 (5): 976-86.                      


A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons., Kostakis E., J Neurochem. November 1, 2011; 119 (3): 486-96.


The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit., Zhang Y, Zhang Y., J Neurosci. June 2, 2010; 30 (22): 7575-86.


Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists., Hansen KB., J Pharmacol Exp Ther. June 1, 2010; 333 (3): 650-62.


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors., Masuko T., J Pharmacol Exp Ther. November 1, 2009; 331 (2): 522-30.


Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors., Schmidt C., Mol Cell Neurosci. October 1, 2009; 42 (2): 116-27.


Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles., Ewald RC., Front Mol Neurosci. September 11, 2009; 2 4.          


The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors., Yuan H., J Biol Chem. May 8, 2009; 284 (19): 12862-73.


Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors., Cavara NA., BMC Neurosci. April 6, 2009; 10 32.      


Pharmacological characterization of recombinant NR1/NR2A NMDA receptors with truncated and deleted carboxy termini expressed in Xenopus laevis oocytes., Puddifoot CA., Br J Pharmacol. February 1, 2009; 156 (3): 509-18.


Binding of spermine and ifenprodil to a purified, soluble regulatory domain of the N-methyl-D-aspartate receptor., Han X., J Neurochem. December 1, 2008; 107 (6): 1566-77.


Differential effect of high pressure on NMDA receptor currents in Xenopus laevis oocytes., Mor A., Diving Hyperb Med. December 1, 2008; 38 (4): 194-6.


Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function., Samson AL., J Neurochem. November 1, 2008; 107 (4): 1091-101.


The NR1 M3 domain mediates allosteric coupling in the N-methyl-D-aspartate receptor., Blanke ML., Mol Pharmacol. August 1, 2008; 74 (2): 454-65.


Constitutive activation of the N-methyl-D-aspartate receptor via cleft-spanning disulfide bonds., Blanke ML., J Biol Chem. August 1, 2008; 283 (31): 21519-29.


Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes., Chen PE., J Physiol. January 1, 2008; 586 (1): 227-45.


Molecular and functional studies of tilapia (Oreochromis mossambicus) NMDA receptor NR1 subunits., Tzeng DW., Comp Biochem Physiol B Biochem Mol Biol. March 1, 2007; 146 (3): 402-11.


Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission., Frizelle PA., Mol Pharmacol. September 1, 2006; 70 (3): 1022-32.


RNA interference of Xenopus NMDAR NR1 in vitro and in vivo., Miskevich F., J Neurosci Methods. April 15, 2006; 152 (1-2): 65-73.


Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity., Woods AS., J Proteome Res. April 1, 2006; 5 (4): 1017-23.


Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis., Hansen KB., Mol Pharmacol. December 1, 2005; 68 (6): 1510-23.


Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids., Conti P., J Med Chem. October 6, 2005; 48 (20): 6315-25.


Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-D-aspartate-gated channels., Chen HS., J Pharmacol Exp Ther. September 1, 2005; 314 (3): 961-71.


The NR3B subunit does not alter the anesthetic sensitivities of recombinant N-methyl-D-aspartate receptors., Yamakura T., Anesth Analg. June 1, 2005; 100 (6): 1687-1692.


Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes., Zuo Z., J Exp Biol. June 1, 2005; 208 (Pt 11): 2063-70.


Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling., Chen PE., Mol Pharmacol. May 1, 2005; 67 (5): 1470-84.


Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits., Chandra T., Neuroscience. January 1, 2005; 134 (1): 145-53.


Monoamines directly inhibit N-methyl-D-aspartate receptors expressed in Xenopus oocytes in a voltage-dependent manner., Masuko T., Neurosci Lett. November 16, 2004; 371 (1): 30-3.


Differential modulation of NR1-NR2A and NR1-NR2B subtypes of NMDA receptor by PDZ domain-containing proteins., Iwamoto T., J Neurochem. April 1, 2004; 89 (1): 100-8.


Functional analysis of Caenorhabditis elegans glutamate receptor subunits by domain transplantation., Strutz-Seebohm N., J Biol Chem. November 7, 2003; 278 (45): 44691-701.


Dynorphin A inhibits NMDA receptors through a pH-dependent mechanism., Kanemitsu Y., Mol Cell Neurosci. November 1, 2003; 24 (3): 525-37.


Structural model of the N-methyl-D-aspartate receptor glycine site probed by site-directed chemical coupling., Foucaud B., J Biol Chem. June 27, 2003; 278 (26): 24011-7.


Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids., Malayev A., Br J Pharmacol. February 1, 2002; 135 (4): 901-9.


The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801., Rammes G., Neuropharmacology. May 1, 2001; 40 (6): 749-60.


Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes., Cruz SL., Br J Pharmacol. December 1, 2000; 131 (7): 1303-8.


Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors., Low CM., Proc Natl Acad Sci U S A. September 26, 2000; 97 (20): 11062-7.


NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A., Goebel DJ., Brain Res Mol Brain Res. June 8, 1999; 69 (2): 164-70.


Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit., Villmann C., Eur J Neurosci. May 1, 1999; 11 (5): 1765-78.


Differentiation of glycine antagonist sites of N-methyl-D-aspartate receptor subtypes. Preferential interaction of CGP 61594 with NR1/2B receptors., Honer M., J Biol Chem. May 1, 1998; 273 (18): 11158-63.


Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+., Wollmuth LP., J Physiol. January 1, 1998; 506 ( Pt 1) 13-32.


An active-site histidine of NR1/2C mediates voltage-independent inhibition by zinc., Gray AT., Brain Res Mol Brain Res. December 1, 1997; 52 (1): 157-61.

???pagination.result.page??? 1 2 ???pagination.result.next???