Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(68)

Publications By David Kimelman

Results 1 - 50 of 68 results

Page(s): 1 2 Next

Taking a bite out of Wnts., Bouldin CM, Kimelman D., Cell Res. December 1, 2012; 22 (12): 1621-3.

Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation., Martin BL, Kimelman D., Dev Cell. January 17, 2012; 22 (1): 223-32.

On the fast track to organizer gene expression., Kimelman D., Dev Cell. August 17, 2010; 19 (2): 190-2.

Interactions between Casein kinase Iepsilon (CKIepsilon) and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity., Dahlberg CL, Nguyen EZ, Goodlett D, Kimelman D., PLoS One. January 1, 2009; 4 (3): e4766.                  

Developmental biology: micro(RNA)-managing nodal., Martin BL, Kimelman D., Curr Biol. November 20, 2007; 17 (22): R975-7.

Crystal structure of a beta-catenin/BCL9/Tcf4 complex., Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W., Mol Cell. October 20, 2006; 24 (2): 293-300.

Mesoderm induction: from caps to chips., Kimelman D., Nat Rev Genet. May 1, 2006; 7 (5): 360-72.

Bmp signaling: turning a half into a whole., Kimelman D, Pyati UJ., Cell. December 16, 2005; 123 (6): 982-4.

LZIC regulates neuronal survival during zebrafish development., Clements WK, Kimelman D., Dev Biol. July 15, 2005; 283 (2): 322-34.

Move it or lose it: axis specification in Xenopus., Weaver C, Kimelman D., Development. August 1, 2004; 131 (15): 3491-9.          

Cysteine repeat domains and adjacent sequences determine distinct bone morphogenetic protein modulatory activities of the Drosophila Sog protein., Yu K, Kang KH, Heine P, Pyati U, Srinivasan S, Biehs B, Kimelman D, Bier E., Genetics. March 1, 2004; 166 (3): 1323-36.

Interplay between FGF, one-eyed pinhead, and T-box transcription factors during zebrafish posterior development., Griffin KJ, Kimelman D., Dev Biol. December 15, 2003; 264 (2): 456-66.

Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex., Xing Y, Clements WK, Kimelman D, Xu W., Genes Dev. November 15, 2003; 17 (22): 2753-64.

GBP binds kinesin light chain and translocates during cortical rotation in Xenopus eggs., Weaver C, Farr GH, Pan W, Rowning BA, Wang J, Mao J, Wu D, Li L, Larabell CA, Kimelman D., Development. November 1, 2003; 130 (22): 5425-36.              

Wnt signalling gets XEEKy., Clements WK, Kimelman D., Nat Cell Biol. October 1, 2003; 5 (10): 861-3.

Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality., Concha ML, Russell C, Regan JC, Tawk M, Sidi S, Gilmour DT, Kapsimali M, Sumoy L, Goldstone K, Amaya E, Kimelman D, Nicolson T, Gründer S, Gomperts M, Clarke JD, Wilson SW., Neuron. July 31, 2003; 39 (3): 423-38.

The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT., Graham TA, Clements WK, Kimelman D, Xu W., Mol Cell. September 1, 2002; 10 (3): 563-71.

Glycogen synthase kinase-3 beta mutagenesis identifies a common binding domain for GBP and Axin., Ferkey DM, Kimelman D., J Biol Chem. May 3, 2002; 277 (18): 16147-52.

Tcf4 can specifically recognize beta-catenin using alternative conformations., Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W., Nat Struct Biol. December 1, 2001; 8 (12): 1048-52.

The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish., Imai Y, Gates MA, Melby AE, Kimelman D, Schier AF, Talbot WS., Development. June 1, 2001; 128 (12): 2407-20.

The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. ., Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T., Dev Biol. January 15, 2001; 229 (2): 287-306.                

Crystal structure of a beta-catenin/Tcf complex., Graham TA, Weaver C, Mao F, Kimelman D, Xu W., Cell. December 8, 2000; 103 (6): 885-96.

GSK-3: new thoughts on an old enzyme., Ferkey DM, Kimelman D., Dev Biol. September 15, 2000; 225 (2): 471-9.

Patterning the early zebrafish by the opposing actions of bozozok and vox/vent., Melby AE, Beach C, Mullins M, Kimelman D., Dev Biol. August 15, 2000; 224 (2): 275-85.

Vertebrate mesendoderm induction and patterning., Kimelman D, Griffin KJ., Curr Opin Genet Dev. August 1, 2000; 10 (4): 350-6.

Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity., Yu K, Srinivasan S, Shimmi O, Biehs B, Rashka KE, Kimelman D, O'Connor MB, Bier E., Development. May 1, 2000; 127 (10): 2143-54.

Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification., Farr GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D., J Cell Biol. February 21, 2000; 148 (4): 691-702.      

Transcriptional regulation in Xenopus: a bright and froggy future., Kimelman D., Curr Opin Genet Dev. October 1, 1999; 9 (5): 553-8.

Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1., Li L, Yuan H, Weaver CD, Mao J, Farr GH, Sussman DJ, Jonkers J, Kimelman D, Wu D., EMBO J. August 2, 1999; 18 (15): 4233-40.

Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox., Melby AE, Clements WK, Kimelman D., Dev Biol. July 15, 1999; 211 (2): 293-305.            

XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development., Brannon M, Brown JD, Bates R, Kimelman D, Moon RT., Development. June 1, 1999; 126 (14): 3159-70.                  

Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish., Sumoy L, Kiefer J, Kimelman D., Dev Genes Evol. January 1, 1999; 209 (1): 48-58.

Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes., Griffin KJ, Amacher SL, Kimmel CB, Kimelman D., Development. September 1, 1998; 125 (17): 3379-88.

Mesoderm induction: a postmodern view., Kimelman D, Griffin KJ., Cell. August 21, 1998; 94 (4): 419-21.

From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus., Moon RT, Kimelman D., Bioessays. July 1, 1998; 20 (7): 536-45.

GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis., Yost C, Farr GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D., Cell. June 12, 1998; 93 (6): 1031-41.

A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus., Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D., Genes Dev. September 15, 1997; 11 (18): 2359-70.

Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway., Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT., J Cell Biol. March 10, 1997; 136 (5): 1123-36.                

Activation of Siamois by the Wnt pathway., Brannon M, Kimelman D., Dev Biol. November 25, 1996; 180 (1): 344-7.

The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3., Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT., Genes Dev. June 15, 1996; 10 (12): 1443-54.  

Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE, von Dassow G, Kimelman D., Development. June 1, 1996; 122 (6): 1711-21.                    

Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus., Pierce SB, Kimelman D., Dev Biol. May 1, 1996; 175 (2): 256-64.          

The Xenopus laevis homeobox gene Xgbx-2 is an early marker of anteroposterior patterning in the ectoderm., von Bubnoff A, Schmidt JE, Kimelman D., Mech Dev. February 1, 1996; 54 (2): 149-60.          

Regulation of dorsal-ventral axis formation in Xenopus by intercellular and intracellular signalling., Kimelman D, Pierce SB., Biochem Soc Symp. January 1, 1996; 62 13-23.

Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning., Schmidt J, Francois V, Bier E, Kimelman D., Development. December 1, 1995; 121 (12): 4319-28.                

A homeobox gene essential for zebrafish notochord development., Talbot WS, Trevarrow B, Halpern ME, Melby AE, Farr G, Postlethwait JH, Jowett T, Kimmel CB, Kimelman D., Nature. November 9, 1995; 378 (6553): 150-7.

BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus., Northrop J, Woods A, Seger R, Suzuki A, Ueno N, Krebs E, Kimelman D., Dev Biol. November 1, 1995; 172 (1): 242-52.            

FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction., Cornell RA, Musci TJ, Kimelman D., Development. August 1, 1995; 121 (8): 2429-37.

Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo., Schmidt JE, Suzuki A, Ueno N, Kimelman D., Dev Biol. May 1, 1995; 169 (1): 37-50.              

COUP-TFI is a potential regulator of retinoic acid-modulated development in Xenopus embryos., Schuh TJ, Kimelman D., Mech Dev. May 1, 1995; 51 (1): 39-49.

Page(s): 1 2 Next