Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (35)
XB-PERS-1156

Publications By Jonathan J. Henry

???pagination.result.count???

???pagination.result.page??? 1


Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level., Sonam S, Bangru S, Perry KJ, Chembazhi UV, Kalsotra A, Henry JJ., Dev Biol. November 1, 2022; 491 13-30.                                


Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems., Adil MT, Henry JJ., Genesis. February 1, 2021; 59 (1-2): e23411.                


Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus., Adil MT, Simons CM, Sonam S, Henry JJ., Exp Eye Res. October 1, 2019; 187 107767.                                        


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S, Srnak JA, Perry KJ, Henry JJ., Exp Eye Res. July 1, 2019; 184 107-125.                        


The role of sensory innervation in cornea-lens regeneration., Perry KJ, Hamilton PW, Sonam S, Singh R, Henry JJ., Dev Dyn. July 1, 2019; 248 (7): 530-544.          


Methods for Examining Lens Regeneration in Xenopus., Henry JJ, Perry KJ, Hamilton PW., Cold Spring Harb Protoc. April 1, 2019; 2019 (4): pdb.prot101527.


Ex Vivo Eye Tissue Culture Methods for Xenopus., Henry JJ, Perry KJ, Hamilton PW., Cold Spring Harb Protoc. April 1, 2019; 2019 (4):


RNA helicase Mov10 is essential for gastrulation and central nervous system development., Skariah G, Perry KJ, Drnevich J, Henry JJ, Ceman S., Dev Dyn. April 1, 2018; 247 (4): 660-671.              


The lens regenerative competency of limbal vs. central regions of mature Xenopus cornea epithelium., Hamilton PW, Henry JJ., Exp Eye Res. November 1, 2016; 152 94-99.    


Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling., Hamilton PW, Sun Y, Henry JJ., Exp Eye Res. April 1, 2016; 145 206-215.          


Prolonged in vivo imaging of Xenopus laevis., Hamilton PW, Henry JJ., Dev Dyn. August 1, 2014; 243 (8): 1011-9.    


Retinoic acid regulation by CYP26 in vertebrate lens regeneration., Thomas AG, Henry JJ., Dev Biol. February 15, 2014; 386 (2): 291-301.            


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ, Thomas AG, Henry JJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C, Yazgan O, Kuo HC, Malakar S, Thomas T, Fitzgerald A, Harbour W, Henry JJ, Krebs JE., Mech Dev. January 1, 2012; 129 (9-12): 324-38.              


FGF signaling is required for lens regeneration in Xenopus laevis., Fukui L, Henry JJ., Biol Bull. August 1, 2011; 221 (1): 137-45.


Molecular and cellular aspects of amphibian lens regeneration., Henry JJ, Tsonis PA., Prog Retin Eye Res. November 1, 2010; 29 (6): 543-55.


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ, Johnson VR, Malloch EL, Fukui L, Wever J, Thomas AG, Hamilton PW, Henry JJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Gene expression profiles of lens regeneration and development in Xenopus laevis., Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ., Dev Dyn. September 1, 2009; 238 (9): 2340-56.                                    


Psf2 plays important roles in normal eye development in Xenopus laevis., Walter BE, Perry KJ, Fukui L, Malloch EL, Wever J, Henry JJ., Mol Vis. May 19, 2008; 14 906-21.                  


Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development., Elkins MB, Henry JJ., Dev Dyn. July 1, 2006; 235 (7): 1845-57.                  


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD, Henry JJ., Dev Dyn. April 1, 2006; 235 (4): 1027-41.          


Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis., Dirscherl SS, Henry JJ, Krebs JE., Mech Dev. November 1, 2005; 122 (11): 1157-70.          


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE, Henry JJ., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis., Wolfe AD, Crimmins G, Cameron JA, Henry JJ., Dev Dyn. August 1, 2004; 230 (4): 615-29.        


Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis., Walter BE, Tian Y, Garlisch AK, Carinato ME, Elkins MB, Wolfe AD, Schaefer JJ, Perry KJ, Henry JJ., Mol Vis. March 24, 2004; 10 186-98.


Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction., Henry JJ, Carinato ME, Schaefer JJ, Wolfe AD, Walter BE, Perry KJ, Elbl TN., Dev Dyn. June 1, 2002; 224 (2): 168-85.        


Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis., Henry JJ, Elkins MB., Dev Genes Evol. September 1, 2001; 211 (8-9): 377-87.


Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing., Carinato ME, Walter BE, Henry JJ., Dev Dyn. April 1, 2000; 217 (4): 377-87.      


Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation in Xenopus laevis., Schaefer JJ, Oliver G, Henry JJ., Dev Dyn. August 1, 1999; 215 (4): 308-18.        


Inductive processes leading to inner ear formation during Xenopus development., Gallagher BC, Henry JJ, Grainger RM., Dev Biol. April 10, 1996; 175 (1): 95-107.


The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm., Henry JJ, Mittleman JM., Dev Biol. September 1, 1995; 171 (1): 39-50.


Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes., de Fiebre CM, Meyer EM, Henry JC, Muraskin SI, Kem WR, Papke RL., Mol Pharmacol. January 1, 1995; 47 (1): 164-71.


Recent progress on the mechanisms of embryonic lens formation., Grainger RM, Henry JJ, Saha MS, Servetnick M., Eye (Lond). January 1, 1992; 6 ( Pt 2) 117-22.


Early tissue interactions leading to embryonic lens formation in Xenopus laevis., Henry JJ, Grainger RM., Dev Biol. September 1, 1990; 141 (1): 149-63.


Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis., Henry JJ, Grainger RM., Dev Biol. November 1, 1987; 124 (1): 200-14.

???pagination.result.page??? 1