???pagination.result.count???
???pagination.result.page???
1
Cellular and molecular profiles of larval and adult Xenopus corneal epithelia resolved at the single-cell level. , Sonam S, Bangru S, Perry KJ, Chembazhi UV, Kalsotra A, Henry JJ ., Dev Biol. November 29, 2022; 491 13-30.
Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. , Adil MT, Henry JJ ., Genesis. February 1, 2021; 59 (1-2): e23411.
Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. , Adil MT, Simons CM, Sonam S, Henry JJ ., Exp Eye Res. October 1, 2019; 187 107767.
Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. , Sonam S, Srnak JA, Perry KJ, Henry JJ ., Exp Eye Res. July 1, 2019; 184 107-125.
The role of sensory innervation in cornea- lens regeneration. , Perry KJ, Hamilton PW, Sonam S, Singh R, Henry JJ ., Dev Dyn. July 1, 2019; 248 (7): 530-544.
Methods for Examining Lens Regeneration in Xenopus. , Henry JJ , Perry KJ, Hamilton PW., Cold Spring Harb Protoc. April 1, 2019; 2019 (4): pdb.prot101527.
Ex Vivo Eye Tissue Culture Methods for Xenopus. , Henry JJ , Perry KJ, Hamilton PW., Cold Spring Harb Protoc. April 1, 2019; 2019 (4):
RNA helicase Mov10 is essential for gastrulation and central nervous system development. , Skariah G, Perry KJ, Drnevich J, Henry JJ , Ceman S., Dev Dyn. April 1, 2018; 247 (4): 660-671.
The lens regenerative competency of limbal vs. central regions of mature Xenopus cornea epithelium. , Hamilton PW, Henry JJ ., Exp Eye Res. November 1, 2016; 152 94-99.
Lens regeneration from the cornea requires suppression of Wnt/ β-catenin signaling. , Hamilton PW, Sun Y, Henry JJ ., Exp Eye Res. April 1, 2016; 145 206-215.
Prolonged in vivo imaging of Xenopus laevis. , Hamilton PW, Henry JJ ., Dev Dyn. August 1, 2014; 243 (8): 1011-9.
Retinoic acid regulation by CYP26 in vertebrate lens regeneration. , Thomas AG , Henry JJ ., Dev Biol. February 15, 2014; 386 (2): 291-301.
Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells. , Perry KJ, Thomas AG , Henry JJ ., Dev Biol. February 15, 2013; 374 (2): 281-94.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C, Yazgan O, Kuo HC, Malakar S, Thomas T, Fitzgerald A, Harbour W, Henry JJ , Krebs JE., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
FGF signaling is required for lens regeneration in Xenopus laevis. , Fukui L , Henry JJ ., Biol Bull. August 1, 2011; 221 (1): 137-45.
Molecular and cellular aspects of amphibian lens regeneration. , Henry JJ , Tsonis PA ., Prog Retin Eye Res. November 1, 2010; 29 (6): 543-55.
The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. , Perry KJ, Johnson VR, Malloch EL, Fukui L , Wever J, Thomas AG , Hamilton PW, Henry JJ ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.
Gene expression profiles of lens regeneration and development in Xenopus laevis. , Malloch EL, Perry KJ, Fukui L , Johnson VR, Wever J, Beck CW , King MW , Henry JJ ., Dev Dyn. September 1, 2009; 238 (9): 2340-56.
Psf2 plays important roles in normal eye development in Xenopus laevis. , Walter BE, Perry KJ, Fukui L , Malloch EL, Wever J, Henry JJ ., Mol Vis. May 19, 2008; 14 906-21.
Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development. , Elkins MB, Henry JJ ., Dev Dyn. July 1, 2006; 235 (7): 1845-57.
Neuronal leucine-rich repeat 6 ( XlNLRR-6) is required for late lens and retina development in Xenopus laevis. , Wolfe AD, Henry JJ ., Dev Dyn. April 1, 2006; 235 (4): 1027-41.
Neural and eye-specific defects associated with loss of the imitation switch ( ISWI) chromatin remodeler in Xenopus laevis. , Dirscherl SS, Henry JJ , Krebs JE., Mech Dev. November 1, 2005; 122 (11): 1157-70.
Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis. , Walter BE, Henry JJ ., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.
Early regeneration genes: Building a molecular profile for shared expression in cornea- lens transdifferentiation and hindlimb regeneration in Xenopus laevis. , Wolfe AD, Crimmins G, Cameron JA , Henry JJ ., Dev Dyn. August 1, 2004; 230 (4): 615-29.
Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis. , Walter BE, Tian Y, Garlisch AK, Carinato ME, Elkins MB, Wolfe AD, Schaefer JJ, Perry KJ, Henry JJ ., Mol Vis. March 24, 2004; 10 186-98.
Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction. , Henry JJ , Carinato ME, Schaefer JJ, Wolfe AD, Walter BE, Perry KJ , Elbl TN., Dev Dyn. June 1, 2002; 224 (2): 168-85.
Cornea- lens transdifferentiation in the anuran, Xenopus tropicalis. , Henry JJ , Elkins MB., Dev Genes Evol. September 1, 2001; 211 (8-9): 377-87.
Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing. , Carinato ME, Walter BE, Henry JJ ., Dev Dyn. April 1, 2000; 217 (4): 377-87.
Conservation of gene expression during embryonic lens formation and cornea- lens transdifferentiation in Xenopus laevis. , Schaefer JJ, Oliver G , Henry JJ ., Dev Dyn. August 1, 1999; 215 (4): 308-18.
Inductive processes leading to inner ear formation during Xenopus development. , Gallagher BC, Henry JJ , Grainger RM ., Dev Biol. April 10, 1996; 175 (1): 95-107.
The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm. , Henry JJ , Mittleman JM., Dev Biol. September 1, 1995; 171 (1): 39-50.
Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes. , de Fiebre CM, Meyer EM, Henry JC , Muraskin SI, Kem WR, Papke RL., Mol Pharmacol. January 1, 1995; 47 (1): 164-71.
Recent progress on the mechanisms of embryonic lens formation. , Grainger RM , Henry JJ , Saha MS , Servetnick M ., Eye (Lond). January 1, 1992; 6 ( Pt 2) 117-22.
Early tissue interactions leading to embryonic lens formation in Xenopus laevis. , Henry JJ , Grainger RM ., Dev Biol. September 1, 1990; 141 (1): 149-63.
Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis. , Henry JJ , Grainger RM ., Dev Biol. November 1, 1987; 124 (1): 200-14.