Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (22)
XB-PERS-2059

Publications By Luc Paillard

???pagination.result.count???

???pagination.result.page??? 1


The Splicing Factor PTBP1 Represses TP63 γ Isoform Production in Squamous Cell Carcinoma., Taylor W, Deschamps S, Reboutier D, Paillard L, Méreau A, Audic Y., Cancer Res Commun. December 1, 2022; 2 (12): 1669-1683.                                


Modeling ocular lens disease in Xenopus., Viet J, Reboutier D, Hardy S, Lachke SA, Paillard L, Gautier-Courteille C., Dev Dyn. May 1, 2020; 249 (5): 610-621.          


The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development., Siddam AD, Gautier-Courteille C, Perez-Campos L, Anand D, Kakrana A, Dang CA, Legagneux V, Méreau A, Viet J, Gross JM, Paillard L, Lachke SA., PLoS Genet. March 1, 2018; 14 (3): e1007278.            


Robust identification of Ptbp1-dependent splicing events by a junction-centric approach in Xenopus laevis., Noiret M, Méreau A, Angrand G, Bervas M, Gautier-Courteille C, Legagneux V, Deschamps S, Lerivray H, Viet J, Hardy S, Paillard L, Audic Y., Dev Biol. June 15, 2017; 426 (2): 449-459.            


Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways., Noiret M, Mottier S, Angrand G, Gautier-Courteille C, Lerivray H, Viet J, Paillard L, Mereau A, Hardy S, Audic Y., Dev Biol. January 15, 2016; 409 (2): 489-501.                


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A, Anquetil V, Lerivray H, Viet J, Schirmer C, Audic Y, Legagneux V, Hardy S, Paillard L., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.              


A gene regulation network controlled by Celf1 protein-rbpj mRNA interaction in Xenopus somite segmentation., Cibois M, Gautier-Courteille C, Kodjabachian L, Paillard L., Biol Open. August 21, 2013; 2 (10): 1078-83.          


Reverse genetics in eukaryotes., Hardy S, Legagneux V, Audic Y, Paillard L., Biol Cell. October 1, 2010; 102 (10): 561-80.


A strategy to analyze the phenotypic consequences of inhibiting the association of an RNA-binding protein with a specific RNA., Cibois M, Gautier-Courteille C, Vallée A, Paillard L., RNA. January 1, 2010; 16 (1): 10-5.


Analysis of splicing patterns by pyrosequencing., Méreau A, Anquetil V, Cibois M, Noiret M, Primot A, Vallée A, Paillard L., Nucleic Acids Res. October 1, 2009; 37 (19): e126.            


CUG-BP1/CELF1 requires UGU-rich sequences for high-affinity binding., Marquis J, Paillard L, Audic Y, Cosson B, Danos O, Le Bec C, Osborne HB., Biochem J. December 1, 2006; 400 (2): 291-301.


Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding., Cosson B, Gautier-Courteille C, Maniey D, Aït-Ahmed O, Lesimple M, Osborne HB, Paillard L., Biol Cell. November 1, 2006; 98 (11): 653-65.


Post-transcriptional regulation in Xenopus embryos: role and targets of EDEN-BP., Osborne HB, Gautier-Courteille C, Graindorge A, Barreau C, Audic Y, Thuret R, Pollet N, Paillard L., Biochem Soc Trans. December 1, 2005; 33 (Pt 6): 1541-3.


EDEN-BP-dependent post-transcriptional regulation of gene expression in Xenopus somitic segmentation., Gautier-Courteille C, Le Clainche C, Barreau C, Audic Y, Graindorge A, Maniey D, Osborne HB, Paillard L., Development. December 1, 2004; 131 (24): 6107-17.                  


Identification of a novel Xenopus laevis poly (A) binding protein., Cosson B, Braun F, Paillard L, Blackshear P, Beverley Osborne H., Biol Cell. September 1, 2004; 96 (7): 519-27.


East of EDEN was a poly(A) tail., Paillard L, Osborne HB., Biol Cell. January 1, 2003; 95 (3-4): 211-9.


A functional deadenylation assay identifies human CUG-BP as a deadenylation factor., Paillard L, Legagneux V, Beverley Osborne H., Biol Cell. January 1, 2003; 95 (2): 107-13.


c-Jun ARE targets mRNA deadenylation by an EDEN-BP (embryo deadenylation element-binding protein)-dependent pathway., Paillard L, Legagneux V, Maniey D, Osborne HB., J Biol Chem. February 1, 2002; 277 (5): 3232-5.


EDEN-dependent translational repression of maternal mRNAs is conserved between Xenopus and Drosophila., Ezzeddine N, Paillard L, Capri M, Maniey D, Bassez T, Ait-Ahmed O, Osborne HB., Proc Natl Acad Sci U S A. January 8, 2002; 99 (1): 257-62.


Identification of a C-rich element as a novel cytoplasmic polyadenylation element in Xenopus embryos., Paillard L, Maniey D, Lachaume P, Legagneux V, Osborne HB., Mech Dev. May 1, 2000; 93 (1-2): 117-25.


EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos., Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB., EMBO J. January 2, 1998; 17 (1): 278-87.


Poly(A) metabolism in Xenopus laevis embryos: substrate-specific and default poly(A) nuclease activities are mediated by two distinct complexes., Paillard L, Legagneux V, Osborne HB., Biochimie. January 1, 1996; 78 (6): 399-407.

???pagination.result.page??? 1