Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (32)

Publications By Takeo Kubo

Results 1 - 32 of 32 results

Page(s): 1

regeneration factors expressed on myeloid expression in macrophage-like cells is required for tail regeneration in Xenopus laevis tadpoles., Deguchi M, Fukazawa T, Kubo T., Development. August 1, 2023; 150 (15):                       

Cellular responses in the FGF10-mediated improvement of hindlimb regenerative capacity in Xenopus laevis revealed by single-cell transcriptomics., Yanagi N, Kato S, Fukazawa T, Kubo T., Dev Growth Differ. August 1, 2022; 64 (6): 266-278.      

Effective enrichment of stem cells in regenerating Xenopus laevis tadpole tails using the side population method., Kato S, Kubo T, Fukazawa T., Dev Growth Differ. August 1, 2022; 64 (6): 290-296.    

Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S, Sasaki K, Fukazawa T, Kubo T., Sci Rep. February 3, 2022; 12 (1): 1903.                      

Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis., Kato S, Fukazawa T, Kubo T., Biochem Biophys Res Commun. March 5, 2021; 543 50-55.          

interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration., Tsujioka H, Kunieda T, Katou Y, Shirahige K, Fukazawa T, Kubo T., Nat Commun. September 8, 2017; 8 (1): 495.                                

Acute phase response in amputated tail stumps and neural tissue-preferential expression in tail bud embryos of the Xenopus neuronal pentraxin I gene., Hatta-Kobayashi Y, Toyama-Shirai M, Yamanaka T, Takamori M, Wakabayashi Y, Naora Y, Kunieda T, Fukazawa T, Kubo T., Dev Growth Differ. December 1, 2016; 58 (9): 688-701.              

Phyhd1, an XPhyH-like homologue, is induced in mouse T cells upon T cell stimulation., Furusawa Y, Kubo T, Fukazawa T., Biochem Biophys Res Commun. April 8, 2016; 472 (3): 551-6.

Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis., Tsujioka H, Kunieda T, Katou Y, Shirahige K, Kubo T., PLoS One. January 1, 2015; 10 (3): e0111655.          

Expression analysis of XPhyH-like during development and tail regeneration in Xenopus tadpoles: possible role of XPhyH-like expressing immune cells in impaired tail regenerative ability., Naora Y, Hishida Y, Fukazawa T, Kunieda T, Kubo T., Biochem Biophys Res Commun. February 8, 2013; 431 (2): 152-7.              

Suppression of the immune response potentiates tadpole tail regeneration during the refractory period., Fukazawa T, Naora Y, Kunieda T, Kubo T., Development. July 1, 2009; 136 (14): 2323-7.                  

Effects of 808 nm low-power laser irradiation on the muscle contraction of frog gastrocnemius., Komatsu M, Kubo T, Kogure S, Matsuda Y, Watanabe K., Lasers Surg Med. October 1, 2008; 40 (8): 576-83.

Inhibition of branching and spine maturation by repulsive guidance molecule in cultured cortical neurons., Yoshida J, Kubo T, Yamashita T., Biochem Biophys Res Commun. August 8, 2008; 372 (4): 725-9.

Peptides derived from repulsive guidance molecule act as antagonists., Suda M, Hata K, Sawada A, Nakamura Y, Kubo T, Yamaguchi A, Yamashita T., Biochem Biophys Res Commun. July 4, 2008; 371 (3): 501-4.

The extracellular adenosine deaminase growth factor, ADGF/CECR1, plays a role in Xenopus embryogenesis via the adenosine/P1 receptor., Iijima R, Kunieda T, Yamaguchi S, Kamigaki H, Fujii-Taira I, Sekimizu K, Kubo T, Natori S, Homma KJ., J Biol Chem. January 25, 2008; 283 (4): 2255-64.

Identification of novel members of the Xenopus Ca2+ -dependent lectin family and analysis of their gene expression during tail regeneration and development., Ishino T, Kunieda T, Natori S, Sekimizu K, Kubo T., J Biochem. April 1, 2007; 141 (4): 479-88.

Identification of genes induced in regenerating Xenopus tadpole tails by using the differential display method., Ishino T, Shirai M, Kunieda T, Sekimizu K, Natori S, Kubo T., Dev Dyn. February 1, 2003; 226 (2): 317-25.            

Participation of transcription elongation factor XSII-K1 in mesoderm-derived tissue development in Xenopus laevis., Taira Y, Kubo T, Natori S., J Biol Chem. October 13, 2000; 275 (41): 32011-5.                

In vitro effects of estradiol and aromatase inhibitor treatment on sex differentiation in Xenopus laevis gonads., Miyata S, Kubo T., Gen Comp Endocrinol. July 1, 2000; 119 (1): 105-10.

Gene structure and chromosome mapping of mouse transcription elongation factor S-II (Tcea1)., Ito T, Seldin MF, Taketo MM, Kubo T, Natori S., Gene. February 22, 2000; 244 (1-2): 55-63.

Anchoring proteins confer G protein sensitivity to an inward-rectifier K(+) channel through the GK domain., Hibino H, Inanobe A, Tanemoto M, Fujita A, Doi K, Kubo T, Hata Y, Takai Y, Kurachi Y., EMBO J. January 4, 2000; 19 (1): 78-83.

Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L., Kamikouchi A, Takeuchi H, Sawata M, Ohashi K, Natori S, Kubo T., Biochem Biophys Res Commun. January 6, 1998; 242 (1): 181-6.

Inhibition of gastrulation in Xenopus embryos by an antibody against a cathepsin L-like protease., Miyata S, Kubo T., Dev Growth Differ. February 1, 1997; 39 (1): 111-5.

Up- and down-modulation of a cloned Aplysia K+ channel (AKv1.1a) by the activators of protein kinase C., Furukawa Y, Kim HN, Kubo T., Zoolog Sci. February 1, 1995; 12 (1): 35-44.

A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons., Zhao B, Rassendren F, Kaang BK, Furukawa Y, Kubo T, Kandel ER., Neuron. November 1, 1994; 13 (5): 1205-13.

Selective effector coupling of muscarinic acetylcholine receptor subtypes., Fukuda K, Kubo T, Maeda A, Akiba I, Bujo H, Nakai J, Mishina M, Higashida H, Neher E, Marty A., Trends Pharmacol Sci. December 1, 1989; Suppl 4-10.

Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling., Kubo T, Bujo H, Akiba I, Nakai J, Mishina M, Numa S., FEBS Lett. December 5, 1988; 241 (1-2): 119-25.

Different sensitivities to agonist of muscarinic acetylcholine receptor subtypes., Bujo H, Nakai J, Kubo T, Fukuda K, Akiba I, Maeda A, Mishina M, Numa S., FEBS Lett. November 21, 1988; 240 (1-2): 95-100.

Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells., Fukuda K, Higashida H, Kubo T, Maeda A, Akiba I, Bujo H, Mishina M, Numa S., Nature. September 22, 1988; 335 (6188): 355-8.

Primary structure of porcine muscarinic acetylcholine receptor III and antagonist binding studies., Akiba I, Kubo T, Maeda A, Bujo H, Nakai J, Mishina M, Numa S., FEBS Lett. August 1, 1988; 235 (1-2): 257-61.

Molecular distinction between muscarinic acetylcholine receptor subtypes., Fukuda K, Kubo T, Akiba I, Maeda A, Mishina M, Numa S., Nature. June 18, 1987; 327 (6123): 623-5.

Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor., Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K., Nature. October 2, 1986; 323 (6087): 411-6.

Page(s): 1