???pagination.result.count???
???pagination.result.page???
1
regeneration factors expressed on myeloid expression in macrophage-like cells is required for tail regeneration in Xenopus laevis tadpoles. , Deguchi M, Fukazawa T , Kubo T ., Development. July 1, 2023; 150 (15):
Cellular responses in the FGF10-mediated improvement of hindlimb regenerative capacity in Xenopus laevis revealed by single-cell transcriptomics. , Yanagi N, Kato S, Fukazawa T , Kubo T ., Dev Growth Differ. August 1, 2022; 64 (6): 266-278.
Effective enrichment of stem cells in regenerating Xenopus laevis tadpole tails using the side population method. , Kato S, Kubo T , Fukazawa T ., Dev Growth Differ. August 1, 2022; 64 (6): 290-296.
Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. , Suzuki S, Sasaki K, Fukazawa T , Kubo T ., Sci Rep. February 3, 2022; 12 (1): 1903.
Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. , Kato S, Fukazawa T , Kubo T ., Biochem Biophys Res Commun. March 5, 2021; 543 50-55.
interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration. , Tsujioka H, Kunieda T, Katou Y, Shirahige K, Fukazawa T , Kubo T ., Nat Commun. September 8, 2017; 8 (1): 495.
Acute phase response in amputated tail stumps and neural tissue-preferential expression in tail bud embryos of the Xenopus neuronal pentraxin I gene. , Hatta-Kobayashi Y, Toyama-Shirai M, Yamanaka T, Takamori M, Wakabayashi Y, Naora Y, Kunieda T, Fukazawa T , Kubo T ., Dev Growth Differ. December 1, 2016; 58 (9): 688-701.
Phyhd1, an XPhyH-like homologue, is induced in mouse T cells upon T cell stimulation. , Furusawa Y, Kubo T , Fukazawa T ., Biochem Biophys Res Commun. April 8, 2016; 472 (3): 551-6.
Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis. , Tsujioka H, Kunieda T, Katou Y, Shirahige K, Kubo T ., PLoS One. January 1, 2015; 10 (3): e0111655.
Expression analysis of XPhyH-like during development and tail regeneration in Xenopus tadpoles: possible role of XPhyH-like expressing immune cells in impaired tail regenerative ability. , Naora Y, Hishida Y, Fukazawa T , Kunieda T, Kubo T ., Biochem Biophys Res Commun. February 8, 2013; 431 (2): 152-7.
Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. , Fukazawa T , Naora Y, Kunieda T, Kubo T ., Development. July 1, 2009; 136 (14): 2323-7.
Effects of 808 nm low-power laser irradiation on the muscle contraction of frog gastrocnemius. , Komatsu M, Kubo T , Kogure S, Matsuda Y, Watanabe K ., Lasers Surg Med. October 1, 2008; 40 (8): 576-83.
Inhibition of branching and spine maturation by repulsive guidance molecule in cultured cortical neurons. , Yoshida J, Kubo T , Yamashita T., Biochem Biophys Res Commun. August 8, 2008; 372 (4): 725-9.
Peptides derived from repulsive guidance molecule act as antagonists. , Suda M, Hata K, Sawada A, Nakamura Y, Kubo T , Yamaguchi A , Yamashita T., Biochem Biophys Res Commun. July 4, 2008; 371 (3): 501-4.
The extracellular adenosine deaminase growth factor, ADGF/ CECR1, plays a role in Xenopus embryogenesis via the adenosine/ P1 receptor. , Iijima R, Kunieda T, Yamaguchi S, Kamigaki H, Fujii-Taira I, Sekimizu K, Kubo T , Natori S , Homma KJ., J Biol Chem. January 25, 2008; 283 (4): 2255-64.
Identification of novel members of the Xenopus Ca2+ -dependent lectin family and analysis of their gene expression during tail regeneration and development. , Ishino T, Kunieda T, Natori S , Sekimizu K, Kubo T ., J Biochem. April 1, 2007; 141 (4): 479-88.
Identification of genes induced in regenerating Xenopus tadpole tails by using the differential display method. , Ishino T, Shirai M, Kunieda T, Sekimizu K, Natori S , Kubo T ., Dev Dyn. February 1, 2003; 226 (2): 317-25.
Participation of transcription elongation factor XSII-K1 in mesoderm-derived tissue development in Xenopus laevis. , Taira Y, Kubo T , Natori S ., J Biol Chem. October 13, 2000; 275 (41): 32011-5.
In vitro effects of estradiol and aromatase inhibitor treatment on sex differentiation in Xenopus laevis gonads. , Miyata S, Kubo T ., Gen Comp Endocrinol. July 1, 2000; 119 (1): 105-10.
Gene structure and chromosome mapping of mouse transcription elongation factor S-II ( Tcea1). , Ito T, Seldin MF, Taketo MM, Kubo T , Natori S ., Gene. February 22, 2000; 244 (1-2): 55-63.
Anchoring proteins confer G protein sensitivity to an inward-rectifier K(+) channel through the GK domain. , Hibino H, Inanobe A, Tanemoto M, Fujita A, Doi K, Kubo T , Hata Y, Takai Y, Kurachi Y., EMBO J. January 4, 2000; 19 (1): 78-83.
Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L. , Kamikouchi A, Takeuchi H, Sawata M, Ohashi K, Natori S , Kubo T ., Biochem Biophys Res Commun. January 6, 1998; 242 (1): 181-6.
Inhibition of gastrulation in Xenopus embryos by an antibody against a cathepsin L-like protease. , Miyata S, Kubo T ., Dev Growth Differ. February 1, 1997; 39 (1): 111-5.
Up- and down-modulation of a cloned Aplysia K+ channel (AKv1.1a) by the activators of protein kinase C. , Furukawa Y, Kim HN , Kubo T ., Zoolog Sci. February 1, 1995; 12 (1): 35-44.
A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. , Zhao B, Rassendren F, Kaang BK, Furukawa Y, Kubo T , Kandel ER., Neuron. November 1, 1994; 13 (5): 1205-13.
Selective effector coupling of muscarinic acetylcholine receptor subtypes. , Fukuda K, Kubo T , Maeda A, Akiba I, Bujo H, Nakai J, Mishina M, Higashida H, Neher E, Marty A., Trends Pharmacol Sci. December 1, 1989; Suppl 4-10.
Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. , Kubo T , Bujo H, Akiba I, Nakai J, Mishina M, Numa S., FEBS Lett. December 5, 1988; 241 (1-2): 119-25.
Different sensitivities to agonist of muscarinic acetylcholine receptor subtypes. , Bujo H, Nakai J, Kubo T , Fukuda K, Akiba I, Maeda A, Mishina M, Numa S., FEBS Lett. November 21, 1988; 240 (1-2): 95-100.
Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells. , Fukuda K, Higashida H, Kubo T , Maeda A, Akiba I, Bujo H, Mishina M, Numa S., Nature. September 22, 1988; 335 (6188): 355-8.
Primary structure of porcine muscarinic acetylcholine receptor III and antagonist binding studies. , Akiba I, Kubo T , Maeda A, Bujo H, Nakai J, Mishina M, Numa S., FEBS Lett. August 1, 1988; 235 (1-2): 257-61.
Molecular distinction between muscarinic acetylcholine receptor subtypes. , Fukuda K, Kubo T , Akiba I, Maeda A, Mishina M, Numa S., Nature. June 18, 1987; 327 (6123): 623-5.
Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. , Kubo T , Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K., Nature. October 2, 1986; 323 (6087): 411-6.