Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (40)
XB-PERS-520

Publications By Dana Carroll

???pagination.result.count???

???pagination.result.page??? 1


Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication., Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J., Mol Cell. July 1, 2001; 8 (1): 137-47.


Stimulation of homologous recombination through targeted cleavage by chimeric nucleases., Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S., Mol Cell Biol. January 1, 2001; 21 (1): 289-97.


Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L., Christensen S, Pont-Kingdon G, Carroll D., Mol Cell Biol. February 1, 2000; 20 (4): 1219-26.


Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications., Christensen S, Pont-Kingdon G, Carroll D., Genetica. January 1, 2000; 110 (3): 245-56.


Characterization of FEN-1 from Xenopus laevis. cDNA cloning and role in DNA metabolism., Bibikova M, Wu B, Chi E, Kim KH, Trautman JK, Carroll D., J Biol Chem. December 18, 1998; 273 (51): 34222-9.


RNA expression from a site-specific non-LTR retrotransposon microinjected into Xenopus oocytes., Pont-Kingdon G, Chi E, Christensen S, Carroll D., Genetica. January 1, 1998; 104 (1): 67-76.


Processing of targeted psoralen cross-links in Xenopus oocytes., Segal DJ, Faruqi AF, Glazer PM, Carroll D., Mol Cell Biol. November 1, 1997; 17 (11): 6645-52.


Ribonucleoprotein formation by the ORF1 protein of the non-LTR retrotransposon Tx1L in Xenopus oocytes., Pont-Kingdon G, Chi E, Christensen S, Carroll D., Nucleic Acids Res. August 1, 1997; 25 (15): 3088-94.


Homologous genetic recombination in Xenopus: mechanism and implications for gene manipulation., Carroll D., Prog Nucleic Acid Res Mol Biol. January 1, 1996; 54 101-25.


Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes., Segal DJ, Carroll D., Proc Natl Acad Sci U S A. January 31, 1995; 92 (3): 806-10.


Repair of heteroduplex DNA in Xenopus laevis oocytes., Lehman CW, Jeong-Yu S, Trautman JK, Carroll D., Genetics. October 1, 1994; 138 (2): 459-70.


Distribution of exchanges upon homologous recombination of exogenous DNA in Xenopus laevis oocytes., Carroll D, Lehman CW, Jeong-Yu S, Dohrmann P, Dawson RJ, Trautman JK., Genetics. October 1, 1994; 138 (2): 445-57.


Illegitimate recombination in Xenopus: characterization of end-joined junctions., Lehman CW, Trautman JK, Carroll D., Nucleic Acids Res. February 11, 1994; 22 (3): 434-42.


Homologous and illegitimate recombination in developing Xenopus oocytes and eggs., Lehman CW, Clemens M, Worthylake DK, Trautman JK, Carroll D., Mol Cell Biol. November 1, 1993; 13 (11): 6897-906.


Isolation of large quantities of functional, cytoplasm-free Xenopus laevis oocyte nuclei., Lehman CW, Carroll D., Anal Biochem. June 1, 1993; 211 (2): 311-9.


Intermediates in extrachromosomal homologous recombination in Xenopus laevis oocytes: characterization by electron microscopy., Pont-Kingdon G, Dawson RJ, Carroll D., EMBO J. January 1, 1993; 12 (1): 23-34.


Effect of terminal nonhomologies on homologous recombination in Xenopus laevis oocytes., Jeong-Yu S, Carroll D., Mol Cell Biol. December 1, 1992; 12 (12): 5426-37.


Test of the double-strand-break repair model of recombination in Xenopus laevis oocytes., Jeong-Yu SJ, Carroll D., Mol Cell Biol. January 1, 1992; 12 (1): 112-9.


Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes., Lehman CW, Carroll D., Proc Natl Acad Sci U S A. December 1, 1991; 88 (23): 10840-4.


Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination., Maryon E, Carroll D., Mol Cell Biol. June 1, 1991; 11 (6): 3278-87.


Involvement of single-stranded tails in homologous recombination of DNA injected into Xenopus laevis oocyte nuclei., Maryon E, Carroll D., Mol Cell Biol. June 1, 1991; 11 (6): 3268-77.


DNA recombination and repair in oocytes, eggs, and extracts., Carroll D, Lehman CW., Methods Cell Biol. January 1, 1991; 36 467-86.


Amylase synthesis as a simple model system for translation and hybrid arrest in Xenopus oocytes., Urnes MS, Carroll D., Gene. November 15, 1990; 95 (2): 267-74.


Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes., Sweigert SE, Carroll D., Mol Cell Biol. November 1, 1990; 10 (11): 5849-56.


Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes., Maryon E, Carroll D., Mol Cell Biol. November 1, 1989; 9 (11): 4862-71.


Composite transposable elements in the Xenopus laevis genome., Garrett JE, Knutzon DS, Carroll D., Mol Cell Biol. July 1, 1989; 9 (7): 3018-27.


Recombination of DNAs in Xenopus oocytes based on short homologous overlaps., Grzesiuk E, Carroll D., Nucleic Acids Res. February 11, 1987; 15 (3): 971-85.


Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes., Carroll D, Wright SH, Wolff RK, Grzesiuk E, Maryon EB., Mol Cell Biol. June 1, 1986; 6 (6): 2053-61.


Tx1: a transposable element from Xenopus laevis with some unusual properties., Garrett JE, Carroll D., Mol Cell Biol. March 1, 1986; 6 (3): 933-41.


Genetic recombination of Xenopus laevis 5 S DNA in bacteria., Carroll D, Wright SH, Ajioka RS, Hussey CE., J Mol Biol. September 15, 1984; 178 (2): 155-72.


Isolated clusters of paired tandemly repeated sequences in the Xenopus laevis genome., Carroll D, Garrett JE, Lam BS., Mol Cell Biol. February 1, 1984; 4 (2): 254-9.


Genetic recombination of bacteriophage lambda DNAs in Xenopus oocytes., Carroll D., Proc Natl Acad Sci U S A. November 1, 1983; 80 (22): 6902-6.


Tandemly repeated DNA sequences from Xenopus laevis. II. Dispersed clusters of a 388 base-pair repeating unit., Lam BS, Carroll D., J Mol Biol. April 25, 1983; 165 (4): 587-97.


Tandemly repeated DNA sequences from Xenopus laevis. I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat)., Lam BS, Carroll D., J Mol Biol. April 25, 1983; 165 (4): 567-85.


Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis., Young D, Carroll D., Mol Cell Biol. April 1, 1983; 3 (4): 720-30.


Recombination of a eukaryotic DNA in bacteria., Carroll D, Ajioka RS., Gene. August 1, 1980; 10 (3): 273-81.


Chromatin structure of the 5S ribonucleic acid genes of Xenopus laevis., Humphries SE, Young D, Carroll D., Biochemistry. July 24, 1979; 18 (15): 3223-31.


Repeating units of Xenopus laevis oocyte-type 5S DNA are heterogeneous in length., Carroll D, Brown DD., Cell. April 1, 1976; 7 (4): 467-75.


Adjacent repeating units of Xenopus laevis 5S DNA can be heterogeneous in length., Carroll D, Brown DD., Cell. April 1, 1976; 7 (4): 477-86.


Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths., Wellauer PK, Reeder RH, Carroll D, Brown DD, Deutch A, Higashinakagawa T, Dawid IB., Proc Natl Acad Sci U S A. July 1, 1974; 71 (7): 2823-7.

???pagination.result.page??? 1