???pagination.result.count???
???pagination.result.page???
1
Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. , Ciardo D, Haccard O , de Carli F, Hyrien O , Goldar A, Marheineke K ., Nucleic Acids Res. January 24, 2025; 53 (3):
Rif1 restrains the rate of replication origin firing in Xenopus laevis. , Haccard O , Ciardo D, Narrissamprakash H, Bronchain O , Kumagai A , Dunphy WG , Goldar A, Marheineke K ., Commun Biol. July 29, 2023; 6 (1): 788.
A non-transcriptional function of Yap regulates the DNA replication program in Xenopus laevis. , Meléndez García R, Haccard O , Chesneau A, Narassimprakash H, Roger J, Perron M , Marheineke K , Bronchain O ., Elife. July 15, 2022; 11
Polo-like kinase 1 (Plk1) regulates DNA replication origin firing and interacts with Rif1 in Xenopus. , Ciardo D, Haccard O , Narassimprakash H, Cornu D, Guerrera IC, Goldar A, Marheineke K ., Nucleic Acids Res. September 27, 2021; 49 (17): 9851-9869.
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. , Ciardo D, Haccard O , Narassimprakash H, Arbona JM, Hyrien O , Audit B, Marheineke K , Goldar A., Genes (Basel). August 9, 2021; 12 (8):
Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system. , Ciardo D, Haccard O , Narassimprakash H, Chiodelli V, Goldar A, Marheineke K ., Cell Cycle. July 1, 2020; 19 (14): 1817-1832.
Genome wide decrease of DNA replication eye density at the midblastula transition of Xenopus laevis. , Platel M, Narassimprakash H, Ciardo D, Haccard O , Marheineke K ., Cell Cycle. July 1, 2019; 18 (13): 1458-1472.
Publisher''s Note: Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes (J. Cell Sci. 113, 1127-1138). , Frank-Vaillant M, Haccard O , Thibier C, Ozon R, Arlot-Bonnemains Y , Prigent C , Jessus C ., J Cell Sci. July 30, 2018; 131 (14):
Correction: The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes (doi:10.1242/jcs.126599). , Dupré A , Buffin E, Roustan C, Nairn AC, Jessus C , Haccard O ., J Cell Sci. July 30, 2018; 131 (14):
Correction: Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus (doi:10.1242/jcs.166553). , Daldello EM, Le T, Poulhe R, Jessus C , Haccard O , Dupré A ., J Cell Sci. February 1, 2018; 131 (3):
The greatwall kinase is dominant over PKA in controlling the antagonistic function of ARPP19 in Xenopus oocytes. , Dupré AI , Haccard O , Jessus C ., Cell Cycle. August 3, 2017; 16 (15): 1440-1452.
Control of Cdc6 accumulation by Cdk1 and MAPK is essential for completion of oocyte meiotic divisions in Xenopus. , Daldello EM, Le T, Poulhe R, Jessus C , Haccard O , Dupré A ., J Cell Sci. July 15, 2015; 128 (14): 2482-96.
Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. , Dupré A , Daldello EM, Nairn AC, Jessus C , Haccard O ., Nat Commun. January 1, 2014; 5 3318.
The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. , Dupré A , Buffin E, Roustan C, Nairn AC, Jessus C , Haccard O ., J Cell Sci. September 1, 2013; 126 (Pt 17): 3916-26.
Naturally occurring steroids in Xenopus oocyte during meiotic maturation. Unexpected presence and role of steroid sulfates. , Haccard O , Dupré A , Liere P, Pianos A, Eychenne B, Jessus C , Ozon R., Mol Cell Endocrinol. October 15, 2012; 362 (1-2): 110-9.
Greatwall kinase, ARPP-19 and protein phosphatase 2A: shifting the mitosis paradigm. , Haccard O , Jessus C ., Results Probl Cell Differ. January 1, 2011; 53 219-34.
Roles of Greatwall kinase in the regulation of cdc25 phosphatase. , Zhao Y, Haccard O , Wang R , Yu J, Kuang J, Jessus C , Goldberg ML ., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.
Fertilization: calcium''s double punch. , Jessus C , Haccard O ., Nature. September 20, 2007; 449 (7160): 297-8.
Deciphering the H-Ras pathway in Xenopus oocyte. , Gaffré M, Dupré A, Valuckaite R, Suziedelis K, Jessus C , Haccard O ., Oncogene. August 24, 2006; 25 (37): 5155-62.
Redundant pathways for Cdc2 activation in Xenopus oocyte: either cyclin B or Mos synthesis. , Haccard O , Jessus C ., EMBO Rep. March 1, 2006; 7 (3): 321-5.
Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42( MAPK). , Dupré A , Suziedelis K, Valuckaite R, de Gunzburg J, Ozon R, Jessus C , Haccard O ., Oncogene. September 19, 2002; 21 (42): 6425-33.
Mos is not required for the initiation of meiotic maturation in Xenopus oocytes. , Dupré A , Jessus C , Ozon R, Haccard O ., EMBO J. August 1, 2002; 21 (15): 4026-36.
From progesterone to active Cdc2 in Xenopus oocytes: a puzzling signalling pathway. , Karaiskou A, Dupré A, Haccard O , Jessus C ., Biol Cell. September 1, 2001; 93 (1-2): 35-46.
Interplay between Cdc2 kinase and the c- Mos/ MAPK pathway between metaphase I and metaphase II in Xenopus oocytes. , Frank-Vaillant M, Haccard O , Ozon R, Jessus C ., Dev Biol. March 1, 2001; 231 (1): 279-88.
Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. , Frank-Vaillant M, Haccard O , Thibier C, Ozon R, Arlot-Bonnemains Y , Prigent C , Jessus C ., J Cell Sci. April 1, 2000; 113 ( Pt 7) 1127-38.
Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. , Frank-Vaillant M, Jessus C , Ozon R, Maller JL , Haccard O ., Mol Biol Cell. October 1, 1999; 10 (10): 3279-88.
MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. , Karaïskou A, Cayla X, Haccard O , Jessus C , Ozon R., Exp Cell Res. November 1, 1998; 244 (2): 491-500.
Cyclin D2 arrests Xenopus early embryonic cell cycles. , Taieb F, Chartrain I, Chevalier S, Haccard O , Jessus C ., Exp Cell Res. December 15, 1997; 237 (2): 338-46.
Mos proto-oncogene function during oocyte maturation in Xenopus. , Roy LM, Haccard O , Izumi T, Lattes BG, Lewellyn AL, Maller JL ., Oncogene. May 16, 1996; 12 (10): 2203-11.
Induction of Xenopus oocyte meiotic maturation by MAP kinase. , Haccard O , Lewellyn A, Hartley RS , Erikson E, Maller JL ., Dev Biol. April 1, 1995; 168 (2): 677-82.
Association of p34cdc2 kinase and MAP kinase with microtubules during the meiotic maturation of Xenopus oocytes. , Fellous A, Kubelka M, Thibier C, Taieb F, Haccard O , Jessus C ., Int J Dev Biol. December 1, 1994; 38 (4): 651-9.
Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. , Haccard O , Sarcevic B, Lewellyn A, Hartley R, Roy L, Izumi T, Erikson E, Maller JL ., Science. November 19, 1993; 262 (5137): 1262-5.
Mitogen-activated protein kinase ( MAP kinase) activation in Xenopus oocytes: roles of MPF and protein synthesis. , Haccard O , Jessus C , Rime H, Goris J, Merlevede W, Ozon R., Mol Reprod Dev. September 1, 1993; 36 (1): 96-105.
Activation of p34cdc2 kinase by cyclin is negatively regulated by cyclic amp-dependent protein kinase in Xenopus oocytes. , Rime H, Haccard O , Ozon R., Dev Biol. May 1, 1992; 151 (1): 105-10.
Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP. , Jessus C , Rime H, Haccard O , Van Lint J, Goris J, Merlevede W, Ozon R., Development. March 1, 1991; 111 (3): 813-20.
In vivo activation of a microtubule-associated protein kinase during meiotic maturation of the Xenopus oocyte. , Haccard O , Jessus C , Cayla X, Goris J, Merlevede W, Ozon R., Eur J Biochem. September 24, 1990; 192 (3): 633-42.