Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (92)
XB-PERS-733

Publications By Janet Heasman

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???


Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development., Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW., Open Biol. August 1, 2016; 6 (8):             


Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling., Bates TJ, Vonica A, Heasman J, Brivanlou AH, Bell E., Development. October 1, 2013; 140 (20): 4177-81.              


The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning., Cha SW, Tadjuidje E, Wylie C, Heasman J., Development. September 1, 2011; 138 (18): 3989-4000.                  


The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo., Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J., Dev Dyn. July 1, 2011; 240 (7): 1727-36.          


beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2., Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS., Dev Cell. August 17, 2010; 19 (2): 220-31.      


Using oocytes for Wnt signaling assays: paracrine assays and Wnt-conditioned medium., Cha SW, Heasman J., Methods. May 1, 2010; 51 (1): 52-5.


A co-dependent requirement of xBcl9 and Pygopus for embryonic body axis development in Xenopus., Kennedy MW, Cha SW, Tadjuidje E, Andrews PG, Heasman J, Kao KR., Dev Dyn. January 1, 2010; 239 (1): 271-83.  


Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity., Cha SW, Tadjuidje E, White J, Wells J, Mayhew C, Wylie C, Heasman J., Curr Biol. September 29, 2009; 19 (18): 1573-80.  


N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements., Nandadasa S, Tao Q, Menon NR, Heasman J, Wylie C., Development. April 1, 2009; 136 (8): 1327-38.                      


Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation., Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J., Development. November 1, 2008; 135 (22): 3719-29.        


The RNA-binding protein XSeb4R: a positive regulator of VegT mRNA stability and translation that is required for germ layer formation in Xenopus., Souopgui J, Rust B, Vanhomwegen J, Heasman J, Henningfeld KA, Bellefroid E, Pieler T., Genes Dev. September 1, 2008; 22 (17): 2347-52.          


Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus., Mir A, Kofron M, Heasman J, Mogle M, Lang S, Birsoy B, Wylie C., Dev Biol. March 1, 2008; 315 (1): 161-72.            


Maternal control of pattern formation in Xenopus laevis., White JA, Heasman J., J Exp Zool B Mol Dev Evol. January 15, 2008; 310 (1): 73-84.


How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique., Mir A, Heasman J., Methods Mol Biol. January 1, 2008; 469 417-29.


The role of FoxC1 in early Xenopus development., Cha JY, Birsoy B, Kofron M, Mahoney E, Lang S, Wylie C, Heasman J., Dev Dyn. October 1, 2007; 236 (10): 2731-41.        


Comparative analysis of Xenopus VegT, the meso-endodermal determinant, identifies an unusual conserved sequence., Pérez O, Benítez MS, Nath K, Heasman J, Del Pino EM, Elinson RP., Differentiation. July 1, 2007; 75 (6): 559-65.        


G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo., Tao Q, Nandadasa S, McCrea PD, Heasman J, Wylie C., Development. July 1, 2007; 134 (14): 2651-61.                    


Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin., Kofron M, Birsoy B, Houston D, Tao Q, Wylie C, Heasman J., Development. February 1, 2007; 134 (3): 503-13.      


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A, Kofron M, Zorn AM, Bajzer M, Haque M, Heasman J, Wylie CC., Development. February 1, 2007; 134 (4): 779-88.                  


Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos., Liao G, Tao Q, Kofron M, Chen JS, Schloemer A, Davis RJ, Hsieh JC, Wylie C, Heasman J, Kuan CY., Proc Natl Acad Sci U S A. October 31, 2006; 103 (44): 16313-8.                    


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Patterning the early Xenopus embryo., Heasman J., Development. April 1, 2006; 133 (7): 1205-17.


Maternal determinants of embryonic cell fate., Heasman J., Semin Cell Dev Biol. February 1, 2006; 17 (1): 93-8.


Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes., Standley HJ, Destrée O, Kofron M, Wylie C, Heasman J., Dev Biol. January 15, 2006; 289 (2): 318-28.  


Vg 1 is an essential signaling molecule in Xenopus development., Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J., Development. January 1, 2006; 133 (1): 15-20.    


Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos., Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J., Cell. March 25, 2005; 120 (6): 857-71.            


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFbeta proteins in Xenopus development., Birsoy B, Berg L, Williams PH, Smith JC, Wylie CC, Christian JL, Heasman J., Development. February 1, 2005; 132 (3): 591-602.                      


New roles for FoxH1 in patterning the early embryo., Kofron M, Puck H, Standley H, Wylie C, Old R, Whitman M, Heasman J., Development. October 1, 2004; 131 (20): 5065-78.              


The role of Mixer in patterning the early Xenopus embryo., Kofron M, Wylie C, Heasman J., Development. May 1, 2004; 131 (10): 2431-41.


The role of maternal CREB in early embryogenesis of Xenopus laevis., Sundaram N, Tao Q, Wylie C, Heasman J., Dev Biol. September 15, 2003; 261 (2): 337-52.


A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor., Yokota C, Kofron M, Zuck M, Houston DW, Isaacs H, Asashima M, Wylie CC, Heasman J., Development. May 1, 2003; 130 (10): 2199-212.    


pygopus Encodes a nuclear protein essential for wingless/Wnt signaling., Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X., Development. September 1, 2002; 129 (17): 4089-101.  


The roles of three signaling pathways in the formation and function of the Spemann Organizer., Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J., Development. September 1, 2002; 129 (17): 4027-43.                  


Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3., Houston DW, Kofron M, Resnik E, Langland R, Destree O, Wylie C, Heasman J., Development. September 1, 2002; 129 (17): 4015-25.          


Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing., Kofron M, Heasman J, Lang SA, Wylie CC., J Cell Biol. August 19, 2002; 158 (4): 695-708.                  


Morpholino oligos: making sense of antisense?, Heasman J., Dev Biol. March 15, 2002; 243 (2): 209-14.


Vegetal localization of maternal mRNAs is disrupted by VegT depletion., Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS., Dev Biol. December 15, 2001; 240 (2): 377-86.    


The role of maternal axin in patterning the Xenopus embryo., Kofron M, Klein P, Zhang F, Houston DW, Schaible K, Wylie C, Heasman J., Dev Biol. September 1, 2001; 237 (1): 183-201.


Timing of endogenous activin-like signals and regional specification of the Xenopus embryo., Lee MA, Heasman J, Whitman M., Development. August 1, 2001; 128 (15): 2939-52.            


Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis., Xanthos JB, Kofron M, Wylie C, Heasman J., Development. January 1, 2001; 128 (2): 167-80.


Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach., Heasman J, Kofron M, Wylie C., Dev Biol. June 1, 2000; 222 (1): 124-34.        


The putative wnt receptor Xenopus frizzled-7 functions upstream of beta-catenin in vertebrate dorsoventral mesoderm patterning., Sumanas S, Strege P, Heasman J, Ekker SC., Development. May 1, 2000; 127 (9): 1981-90.    


Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors., Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J., Development. December 1, 1999; 126 (24): 5759-70.


Expression of the Lewis group carbohydrate antigens during Xenopus development., Yoshida-Noro C, Heasman J, Goldstone K, Vickers L, Wylie C., Glycobiology. December 1, 1999; 9 (12): 1323-30.


Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development., Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC., Development. October 1, 1999; 126 (19): 4193-200.              


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J., Cell. August 21, 1998; 94 (4): 515-24.                


Evidence that dorsal-ventral differences in gap junctional communication in the early Xenopus embryo are generated by beta-catenin independent of cell adhesion effects., Krufka A, Johnson RG, Wylie CC, Heasman J., Dev Biol. August 1, 1998; 200 (1): 92-102.


Patterning the Xenopus blastula., Heasman J., Development. November 1, 1997; 124 (21): 4179-91.


What my mother told me: Examining the roles of maternal gene products in a vertebrate., Wylie CC, Heasman J., Trends Cell Biol. November 1, 1997; 7 (11): 459-62.      

???pagination.result.page??? 1 2 ???pagination.result.next???