Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (65)
XB-PERS-848

Publications By Lance A Davidson

Results 1 - 50 of 65 results

Page(s): 1 2 Next


Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function., Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A., Angew Chem Int Ed Engl. April 22, 2024; 63 (17): e202318773.


Expanding the Genetic Code of Xenopus laevis Embryos., Brown W, Davidson LA, Deiters A., ACS Chem Biol. February 16, 2024; 19 (2): 516-525.                                  


Microsurgical Manipulations to Isolate Collectively Migrating Mesendoderm., Davidson LA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097378.


Microsurgical Methods to Make the Keller Sandwich Explant and the Dorsal Isolate., Davidson LA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097386.


Microsurgical Methods to Isolate and Culture the Early Gastrula Dorsal Marginal Zone., Davidson LA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097360.


Imaging Methods in Xenopus Cells, Embryos, and Tadpoles., Davidson LA, Lowery LA., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.top105627.


Chambers for Culturing and Immobilizing Xenopus Embryos and Organotypic Explants for Live Imaging., Chu CW, Davidson LA., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.prot107649.


Furry is required for cell movements during gastrulation and functionally interacts with NDR1., Cervino AS, Moretti B, Stuckenholz C, Grecco HE, Davidson LA, Cirio MC., Sci Rep. March 23, 2021; 11 (1): 6607.                                  


Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition., Kim HY, Davidson LA., Methods Mol Biol. January 1, 2021; 2179 275-287.


Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1., Ichikawa T, Stuckenholz C, Davidson LA., Sci Rep. October 15, 2020; 10 (1): 17326.          


From biomechanics to mechanobiology: Xenopus provides direct access to the physical principles that shape the embryo., Chu CW, Masak G, Yang J, Davidson LA., Curr Opin Genet Dev. August 1, 2020; 63 71-77.


Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates., Kim HY, Jackson TR, Stuckenholz C, Davidson LA., Nat Commun. January 31, 2020; 11 (1): 665.                


Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach., Stepien TL, Lynch HE, Yancey SX, Dempsey L, Davidson LA., PLoS One. June 19, 2019; 14 (6): e0218021.                  


Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network., Arnold TR, Shawky JH, Stephenson RE, Dinshaw KM, Higashi T, Huq F, Davidson LA, Miller AL., Elife. January 31, 2019; 8                               


Multiscale analysis of architecture, cell size and the cell cortex reveals cortical F-actin density and composition are major contributors to mechanical properties during convergent extension., Shawky JH, Balakrishnan UL, Stuckenholz C, Davidson LA., Development. October 5, 2018; 145 (19):                               


Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex., Miller CJ, Harris D, Weaver R, Ermentrout GB, Davidson LA., PLoS Comput Biol. September 1, 2018; 14 (9): e1006344.                    


Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation., Shook DR, Kasprowicz EM, Davidson LA, Keller R., Elife. March 13, 2018; 7                           


Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function., Jackson TR, Kim HY, Balakrishnan UL, Stuckenholz C, Davidson LA., Curr Biol. May 8, 2017; 27 (9): 1326-1335.                            


Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube., Vijayraghavan DS, Davidson LA., Birth Defects Res. January 30, 2017; 109 (2): 153-168.


Xenopus as a model for studies in mechanical stress and cell division., Stooke-Vaughan GA, Davidson LA, Woolner S., Genesis. January 1, 2017; 55 (1-2):   


Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes., Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF., J Appl Toxicol. April 1, 2016; 36 (4): 579-85.


Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection., Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF., J Appl Toxicol. April 1, 2016; 36 (4): 568-78.


3D bio-etching of a complex composite-like embryonic tissue., Hazar M, Kim YT, Song J, LeDuc PR, Davidson LA, Messner WC., Lab Chip. August 21, 2015; 15 (16): 3293-9.


Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues., Song J, Shawky JH, Kim Y, Hazar M, LeDuc PR, Sitti M, Davidson LA., Biomaterials. July 1, 2015; 58 1-9.


Force production and mechanical accommodation during convergent extension., Zhou J, Pal S, Maiti S, Davidson LA., Development. February 15, 2015; 142 (4): 692-701.              


Mechanics of blastopore closure during amphibian gastrulation., Feroze R, Shawky JH, von Dassow M, Davidson LA., Dev Biol. February 1, 2015; 398 (1): 57-67.


Mechanochemical actuators of embryonic epithelial contractility., Kim Y, Hazar M, Vijayraghavan DS, Song J, Jackson TR, Joshi SD, Messner WC, Davidson LA, LeDuc PR., Proc Natl Acad Sci U S A. October 7, 2014; 111 (40): 14366-71.


Biomechanics and the thermotolerance of development., von Dassow M, Miller CJ, Davidson LA., PLoS One. January 1, 2014; 9 (4): e95670.            


Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula., Edlund AF, Davidson LA, Keller RE., Dev Dyn. October 1, 2013; 242 (10): 1134-46.  


Investigating morphogenesis in Xenopus embryos: imaging strategies, processing, and analysis., Kim HY, Davidson LA., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 298-304.


Assembly of chambers for stable long-term imaging of live Xenopus tissue., Kim HY, Davidson LA., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 366-9.


Microsurgical approaches to isolate tissues from Xenopus embryos for imaging morphogenesis., Kim HY, Davidson LA., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 362-5.


Preparation and use of reporter constructs for imaging morphogenesis in Xenopus embryos., Kim HY, Davidson LA., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 359-61.


Epithelial machines that shape the embryo., Davidson LA., Trends Cell Biol. February 1, 2012; 22 (2): 82-7.      


Microscopy tools for quantifying developmental dynamics in Xenopus embryos., Joshi SD, Kim HY, Davidson LA., Methods Mol Biol. January 1, 2012; 917 477-93.


Physics and the canalization of morphogenesis: a grand challenge in organismal biology., von Dassow M, Davidson LA., Phys Biol. August 1, 2011; 8 (4): 045002.


Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway., Kim HY, Davidson LA., J Cell Sci. February 15, 2011; 124 (Pt 4): 635-46.            


Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue., Kim Y, Joshi SD, Messner WC, LeDuc PR, Davidson LA., PLoS One. January 7, 2011; 6 (1): e14624.        


Surprisingly simple mechanical behavior of a complex embryonic tissue., von Dassow M, Strother JA, Davidson LA., PLoS One. December 28, 2010; 5 (12): e15359.            


Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin., Zhou J, Kim HY, Wang JH, Davidson LA., Development. August 1, 2010; 137 (16): 2785-94.        


Live-cell imaging and quantitative analysis of embryonic epithelial cells in Xenopus laevis., Joshi SD, Davidson LA., J Vis Exp. May 16, 2010; (39):


Emergent morphogenesis: elastic mechanics of a self-deforming tissue., Davidson LA, Joshi SD, Kim HY, von Dassow M, Zhang L, Zhou J., J Biomech. January 5, 2010; 43 (1): 63-70.


Experimental control of excitable embryonic tissues: three stimuli induce rapid epithelial contraction., Joshi SD, von Dassow M, Davidson LA., Exp Cell Res. January 1, 2010; 316 (1): 103-14.


Stepwise maturation of apicobasal polarity of the neuroepithelium is essential for vertebrate neurulation., Yang X, Zou J, Hyde DR, Davidson LA, Wei X., J Neurosci. September 16, 2009; 29 (37): 11426-40.  


The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo., Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW., Dev Biol. March 15, 2009; 327 (2): 386-98.  


Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure., Zhou J, Kim HY, Davidson LA., Development. February 1, 2009; 136 (4): 677-88.  


Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness., von Dassow M, Davidson LA., Dev Dyn. January 1, 2009; 238 (1): 2-18.


Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis., Davidson LA, Dzamba BD, Keller R, Desimone DW., Dev Dyn. October 1, 2008; 237 (10): 2684-92.        


Integrating morphogenesis with underlying mechanics and cell biology., Davidson LA., Curr Top Dev Biol. January 1, 2008; 81 113-33.


Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis., von Dassow M, Davidson LA., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 253-69.

Page(s): 1 2 Next