???pagination.result.count???
Neighbor cells restrain furrowing during Xenopus epithelial cytokinesis. , Landino J , Misterovich E, van den Goor L, Adhikary B, Chumki S, Davidson LA , Miller AL ., Dev Cell. April 8, 2025;
The TissueTractor: A Device for Applying Large Strains to Tissues and Cells for Simultaneous High-Resolution Live Cell Microscopy. , Yang J , Hearty E, Wang Y, Vijayraghavan DS, Walter T, Anjum S, Stuckenholz C, Cheng YW, Balasubramanian S, Dong Y, Kwiatkowski AV, Davidson LA ., Small Methods. March 9, 2025; e2500136.
Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. , Bardhan A, Brown W, Albright S, Tsang M , Davidson LA , Deiters A., Angew Chem Int Ed Engl. April 22, 2024; 63 (17): e202318773.
Expanding the Genetic Code of Xenopus laevis Embryos. , Brown W, Davidson LA , Deiters A., ACS Chem Biol. February 16, 2024; 19 (2): 516-525.
Microsurgical Manipulations to Isolate Collectively Migrating Mesendoderm. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097378.
Microsurgical Methods to Make the Keller Sandwich Explant and the Dorsal Isolate. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097386.
Microsurgical Methods to Isolate and Culture the Early Gastrula Dorsal Marginal Zone. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097360.
Imaging Methods in Xenopus Cells, Embryos, and Tadpoles. , Davidson LA , Lowery LA ., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.top105627.
Chambers for Culturing and Immobilizing Xenopus Embryos and Organotypic Explants for Live Imaging. , Chu CW, Davidson LA ., Cold Spring Harb Protoc. June 7, 2022; 2022 (5): Pdb.prot107649.
Furry is required for cell movements during gastrulation and functionally interacts with NDR1. , Cervino AS, Moretti B, Stuckenholz C, Grecco HE, Davidson LA , Cirio MC ., Sci Rep. March 23, 2021; 11 (1): 6607.
Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition. , Kim HY , Davidson LA ., Methods Mol Biol. January 1, 2021; 2179 275-287.
Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1. , Ichikawa T, Stuckenholz C, Davidson LA ., Sci Rep. October 15, 2020; 10 (1): 17326.
From biomechanics to mechanobiology: Xenopus provides direct access to the physical principles that shape the embryo. , Chu CW, Masak G, Yang J , Davidson LA ., Curr Opin Genet Dev. August 1, 2020; 63 71-77.
Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates. , Kim HY , Jackson TR, Stuckenholz C, Davidson LA ., Nat Commun. January 31, 2020; 11 (1): 665.
Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network. , Arnold TR, Shawky JH, Stephenson RE , Dinshaw KM, Higashi T, Huq F, Davidson LA , Miller AL ., Elife. January 31, 2019; 8
Using a continuum model to decipher the mechanics of embryonic tissue spreading from time-lapse image sequences: An approximate Bayesian computation approach. , Stepien TL, Lynch HE, Yancey SX, Dempsey L, Davidson LA ., PLoS One. January 1, 2019; 14 (6): e0218021.
Multiscale analysis of architecture, cell size and the cell cortex reveals cortical F-actin density and composition are major contributors to mechanical properties during convergent extension. , Shawky JH, Balakrishnan UL, Stuckenholz C, Davidson LA ., Development. October 5, 2018; 145 (19):
Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex. , Miller CJ, Harris D, Weaver R, Ermentrout GB, Davidson LA ., PLoS Comput Biol. September 1, 2018; 14 (9): e1006344.
Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. , Shook DR , Kasprowicz EM, Davidson LA , Keller R ., Elife. March 13, 2018; 7
Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function. , Jackson TR, Kim HY , Balakrishnan UL, Stuckenholz C, Davidson LA ., Curr Biol. May 8, 2017; 27 (9): 1326-1335.
Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. , Vijayraghavan DS, Davidson LA ., Birth Defects Res. January 30, 2017; 109 (2): 153-168.
Xenopus as a model for studies in mechanical stress and cell division. , Stooke-Vaughan GA, Davidson LA , Woolner S ., Genesis. January 1, 2017; 55 (1-2):
Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes. , Holt BD, Shawky JH, Dahl KN, Davidson LA , Islam MF., J Appl Toxicol. April 1, 2016; 36 (4): 579-85.
Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. , Holt BD, Shawky JH, Dahl KN, Davidson LA , Islam MF., J Appl Toxicol. April 1, 2016; 36 (4): 568-78.
3D bio-etching of a complex composite-like embryonic tissue. , Hazar M, Kim YT, Song J, LeDuc PR, Davidson LA , Messner WC., Lab Chip. August 21, 2015; 15 (16): 3293-9.
Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues. , Song J, Shawky JH, Kim Y, Hazar M, LeDuc PR, Sitti M, Davidson LA ., Biomaterials. July 1, 2015; 58 1-9.
Force production and mechanical accommodation during convergent extension. , Zhou J, Pal S, Maiti S, Davidson LA ., Development. February 15, 2015; 142 (4): 692-701.
Mechanics of blastopore closure during amphibian gastrulation. , Feroze R, Shawky JH, von Dassow M, Davidson LA ., Dev Biol. February 1, 2015; 398 (1): 57-67.
Mechanochemical actuators of embryonic epithelial contractility. , Kim Y, Hazar M, Vijayraghavan DS, Song J, Jackson TR, Joshi SD, Messner WC, Davidson LA , LeDuc PR., Proc Natl Acad Sci U S A. October 7, 2014; 111 (40): 14366-71.
Biomechanics and the thermotolerance of development. , von Dassow M, Miller CJ, Davidson LA ., PLoS One. January 1, 2014; 9 (4): e95670.
Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula. , Edlund AF, Davidson LA , Keller RE ., Dev Dyn. October 1, 2013; 242 (10): 1134-46.
Investigating morphogenesis in Xenopus embryos: imaging strategies, processing, and analysis. , Kim HY , Davidson LA ., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 298-304.
Assembly of chambers for stable long-term imaging of live Xenopus tissue. , Kim HY , Davidson LA ., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 366-9.
Microsurgical approaches to isolate tissues from Xenopus embryos for imaging morphogenesis. , Kim HY , Davidson LA ., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 362-5.
Preparation and use of reporter constructs for imaging morphogenesis in Xenopus embryos. , Kim HY , Davidson LA ., Cold Spring Harb Protoc. April 1, 2013; 2013 (4): 359-61.
Epithelial machines that shape the embryo. , Davidson LA ., Trends Cell Biol. February 1, 2012; 22 (2): 82-7.
Microscopy tools for quantifying developmental dynamics in Xenopus embryos. , Joshi SD, Kim HY , Davidson LA ., Methods Mol Biol. January 1, 2012; 917 477-93.
Physics and the canalization of morphogenesis: a grand challenge in organismal biology. , von Dassow M, Davidson LA ., Phys Biol. August 1, 2011; 8 (4): 045002.
Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. , Kim HY , Davidson LA ., J Cell Sci. February 15, 2011; 124 (Pt 4): 635-46.
Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue. , Kim Y, Joshi SD, Messner WC, LeDuc PR, Davidson LA ., PLoS One. January 7, 2011; 6 (1): e14624.
Surprisingly simple mechanical behavior of a complex embryonic tissue. , von Dassow M, Strother JA, Davidson LA ., PLoS One. December 28, 2010; 5 (12): e15359.
Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin. , Zhou J, Kim HY , Wang JH , Davidson LA ., Development. August 1, 2010; 137 (16): 2785-94.
Live-cell imaging and quantitative analysis of embryonic epithelial cells in Xenopus laevis. , Joshi SD, Davidson LA ., J Vis Exp. May 16, 2010; (39):
Emergent morphogenesis: elastic mechanics of a self-deforming tissue. , Davidson LA , Joshi SD, Kim HY , von Dassow M, Zhang L, Zhou J., J Biomech. January 5, 2010; 43 (1): 63-70.
Experimental control of excitable embryonic tissues: three stimuli induce rapid epithelial contraction. , Joshi SD, von Dassow M, Davidson LA ., Exp Cell Res. January 1, 2010; 316 (1): 103-14.
Stepwise maturation of apicobasal polarity of the neuroepithelium is essential for vertebrate neurulation. , Yang X, Zou J, Hyde DR, Davidson LA , Wei X., J Neurosci. September 16, 2009; 29 (37): 11426-40.
The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. , Rozario T, Dzamba B, Weber GF , Davidson LA , DeSimone DW ., Dev Biol. March 15, 2009; 327 (2): 386-98.
Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. , Zhou J, Kim HY , Davidson LA ., Development. February 1, 2009; 136 (4): 677-88.
Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. , von Dassow M, Davidson LA ., Dev Dyn. January 1, 2009; 238 (1): 2-18.
Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. , Davidson LA , Dzamba BD, Keller R , Desimone DW ., Dev Dyn. October 1, 2008; 237 (10): 2684-92.