Results 1 - 26 of 26 results
A Mixture of Chemicals Found in Human Amniotic Fluid Disrupts Brain Gene Expression and Behavior in Xenopus laevis. , Leemans M, Spirhanzlova P, Couderq S, Le Mével S, Grimaldi A , Duvernois-Berthet E, Demeneix B , Fini JB., Int J Mol Sci. January 30, 2023; 24 (3):
Transcription suppression is mediated by the HDAC1- Sin3 complex in Xenopus nucleoplasmic extract. , Quaas CE, Lin B, Long DT., J Biol Chem. November 1, 2022; 298 (11): 102578.
FoxN3 is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog, Xenopus laevis (Lissamphibia: Anura: Pipidae). , Naumann B, Schmidt J, Olsson L ., Dev Dyn. May 1, 2019; 248 (5): 323-336.
Identification of REST targets in the Xenopus tropicalis genome. , Saritas-Yildirim B, Childers CP, Elsik CG, Silva EM ., BMC Genomics. May 14, 2015; 16 380.
Nucleosome contact triggers conformational changes of Rpd3S driving high-affinity H3K36me nucleosome engagement. , Ruan C, Lee CH , Lee CH , Cui H, Li S, Li B., Cell Rep. January 13, 2015; 10 (2): 204-15.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I, Smolikova J, Vlcek C, Kozmik Z., PLoS One. February 3, 2011; 6 (2): e14650.
HDAC activity is required during Xenopus tail regeneration. , Tseng AS , Carneiro K, Lemire JM , Levin M ., PLoS One. January 1, 2011; 6 (10): e26382.
Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. , Yakushiji N, Yokoyama H, Tamura K ., Semin Cell Dev Biol. July 1, 2009; 20 (5): 565-74.
Maternal Tgif1 regulates nodal gene expression in Xenopus. , Kerr TC, Cuykendall TN , Luettjohann LC, Houston DW ., Dev Dyn. October 1, 2008; 237 (10): 2862-73.
FoxN3 is required for craniofacial and eye development of Xenopus laevis. , Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W ., Dev Dyn. January 1, 2007; 236 (1): 226-39.
A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/ SMRT corepressors on chromatin. , Vermeulen M, Walter W, Le Guezennec X, Kim J , Edayathumangalam RS, Lasonder E, Luger K, Roeder RG, Logie C, Berger SL, Stunnenberg HG., Mol Cell Biol. July 1, 2006; 26 (14): 5226-36.
Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila. , Kon C, Cadigan KM, da Silva SL, Nusse R., Genetics. April 1, 2005; 169 (4): 2087-100.
MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. , Klose RJ, Bird AP., J Biol Chem. November 5, 2004; 279 (45): 46490-6.
Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. , Geiman TM, Sankpal UT, Robertson AK, Chen Y , Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, Robertson KD., Nucleic Acids Res. May 17, 2004; 32 (9): 2716-29.
In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/ SMRT corepressor complexes. , Vermeulen M, Carrozza MJ, Lasonder E, Workman JL, Logie C, Stunnenberg HG., Mol Cell Biol. March 1, 2004; 24 (6): 2364-72.
Methylation gets SMRT. Functional insights into Rett syndrome. , Vetter ML ., Dev Cell. September 1, 2003; 5 (3): 359-60.
A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. , Stancheva I , Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR ., Mol Cell. August 1, 2003; 12 (2): 425-35.
Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. , Li J, Lin Q, Wang W, Wade P, Wong J., Genes Dev. March 15, 2002; 16 (6): 687-92.
An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. , Sachs LM , Amano T , Shi YB ., Int J Mol Med. December 1, 2001; 8 (6): 595-601.
Multiple N-CoR complexes contain distinct histone deacetylases. , Jones PL , Sachs LM , Rouse N, Wade PA, Shi YB , Shi YB ., J Biol Chem. March 23, 2001; 276 (12): 8807-11.
Purification of the MeCP2/histone deacetylase complex from Xenopus laevis. , Jones PL , Wade PA, Wolffe AP ., Methods Mol Biol. January 1, 2001; 181 297-307.
Multiple stage-dependent roles for histone deacetylases during amphibian embryogenesis: implications for the involvement of extracellular matrix remodeling. , Damjanovski S , Sachs LM , Shi YB , Shi YB ., Int J Dev Biol. October 1, 2000; 44 (7): 769-76.
Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v- erbA yields a chromatin infrastructure-dependent transcriptional repression pathway. , Urnov FD, Yee J, Sachs L, Collingwood TN, Bauer A, Beug H, Shi YB , Shi YB , Wolffe AP ., EMBO J. August 1, 2000; 19 (15): 4074-90.
Functional analysis of the SIN3-histone deacetylase RPD3- RbAp48- histone H4 connection in the Xenopus oocyte. , Vermaak D, Wade PA, Jones PL , Shi YB , Wolffe AP ., Mol Cell Biol. September 1, 1999; 19 (9): 5847-60.
A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. , Wade PA, Jones PL , Vermaak D, Wolffe AP ., Curr Biol. July 2, 1998; 8 (14): 843-6.
Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. , Jones PL , Veenstra GJ , Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP ., Nat Genet. June 1, 1998; 19 (2): 187-91.