Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (65) GO Terms (19) Nucleotides (367) Proteins (54) Interactants (609) Wiki
XB-GENEPAGE-482653

Papers associated with zic2



???displayGene.coCitedPapers???
15 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain., Jiménez S, Moreno N., Brain Behav Evol. January 1, 2022; 96 (4-6): 263-282.


SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification., Bellchambers HM, Barratt KS, Diamand KEM, Arkell RM., Int J Mol Sci. September 28, 2021; 22 (19):


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW., PLoS Biol. September 1, 2021; 19 (9): e3001377.                        


Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs., Aztekin C, Hiscock TW, Gurdon J, Jullien J, Marioni J, Simons BD., Development. June 1, 2021; 148 (11):                                             


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Alfandari D, Moody SA., Dev Biol. November 1, 2020; 467 (1-2): 39-50.                  


Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A., Dev Biol. June 15, 2020; 462 (2): 165-179.                    


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA., Dis Model Mech. March 3, 2020; 13 (3):                                               


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA, Ulrich CH, Brzezinska BN, Shah VV, Zamora MJ, Kelly LE, El-Hodiri HM, Sater AK., Genesis. March 1, 2020; 58 (3-4): e23354.                        


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH, Majumdar HD, Neilson KM, Moody SA., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest., Geary L, LaBonne C., Elife. January 19, 2018; 7                     


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA., Dev Biol. September 1, 2017; 429 (1): 213-224.                    


Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


Foxd4 is essential for establishing neural cell fate and for neuronal differentiation., Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM., Genesis. June 1, 2017; 55 (6):   


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition., Wagner G, Singhal N, Nicetto D, Straub T, Kremmer E, Rupp RAW., PLoS Genet. May 12, 2017; 13 (5): e1006757.                                    


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y, Ploper D, Sosa EA, Colozza G, Moriyama Y, Benitez MD, Zhang K, Merkurjev D, De Robertis EM., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Alfandari D, Moody SA., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling., Houtmeyers R, Tchouate Gainkam O, Glanville-Jones HA, Van den Bosch B, Chappell A, Barratt KS, Souopgui J, Tejpar S, Arkell RM., Hum Mol Genet. September 15, 2016; 25 (18): 3946-3959.


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA., Genesis. June 1, 2016; 54 (6): 334-49.                          


Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability., Twigg SR, Forecki J, Goos JA, Richardson IC, Hoogeboom AJ, van den Ouweland AM, Swagemakers SM, Lequin MH, Van Antwerp D, McGowan SJ, Westbury I, Miller KA, Wall SA, WGS500 Consortium, van der Spek PJ, Mathijssen IM, Pauws E, Merzdorf CS, Wilkie AO., Am J Hum Genet. September 3, 2015; 97 (3): 378-88.        


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL, Moody SA., Genesis. May 1, 2015; 53 (5): 308-20.          


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


Neural transcription factors: from embryos to neural stem cells., Lee HK, Lee HS, Moody SA., Mol Cells. October 31, 2014; 37 (10): 705-12.    


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A, Abbey R, Chung C, Liu S, Taketani M, Blumberg B., Development. August 1, 2013; 140 (15): 3095-106.                                                              


On becoming neural: what the embryo can tell us about differentiating neural stem cells., Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.              


Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes., Klein SL, Neilson KM, Orban J, Yaklichkin S, Hoffbauer J, Mood K, Daar IO, Moody SA., PLoS One. April 4, 2013; 8 (4): e61845.                  


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ, Thomas AG, Henry JJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Imparting regenerative capacity to limbs by progenitor cell transplantation., Lin G, Chen Y, Chen Y, Slack JM., Dev Cell. January 14, 2013; 24 (1): 41-51.                          


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RA., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway., Fujimi TJ, Hatayama M, Aruga J., Dev Biol. January 15, 2012; 361 (2): 220-31.                          


Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling., Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S., J Biol Chem. October 28, 2011; 286 (43): 37732-40.          


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW, Hummert P, Mills JC, Kroll KL., Development. January 1, 2011; 138 (1): 33-44.                    


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus., Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM., Dev Biol. January 15, 2010; 337 (2): 335-50.                  


Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation., Yan B, Neilson KM, Moody SA., Dev Dyn. June 1, 2009; 238 (6): 1358-65.        


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B, Neilson KM, Moody SA., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis., Brown L, Brown S., Gene Expr Patterns. January 1, 2009; 9 (1): 43-9.


Emerging roles for zic genes in early development., Merzdorf CS., Dev Dyn. April 1, 2007; 236 (4): 922-40.  


Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family., Fujimi TJ, Mikoshiba K, Aruga J., Dev Dyn. December 1, 2006; 235 (12): 3379-86.                                


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P, Oteíza P, Gamboa E, Gómez-Skármeta JL, Kukuljan M., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning., Houston DW, Wylie C., Development. November 1, 2005; 132 (21): 4845-55.              


Cooperative requirement of the Gli proteins in neurogenesis., Nguyen V, Chokas AL, Stecca B, Ruiz i Altaba A., Development. July 1, 2005; 132 (14): 3267-79.                      


Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression., Gestri G, Carl M, Appolloni I, Wilson SW, Barsacchi G, Andreazzoli M., Development. May 1, 2005; 132 (10): 2401-13.              


Microarray-based identification of VegT targets in Xenopus., Taverner NV, Kofron M, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KW, Heasman J, Smith JC., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Induction of the neural crest and the opportunities of life on the edge., Huang X, Saint-Jeannet JP., Dev Biol. November 1, 2004; 275 (1): 1-11.


Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives., Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K., Dev Biol. June 1, 2004; 270 (1): 146-62.  


Xenopus laevis macrophage migration inhibitory factor is essential for axis formation and neural development., Suzuki M, Takamura Y, Maéno M, Tochinai S, Iyaguchi D, Tanaka I, Nishihira J, Ishibashi T., J Biol Chem. May 14, 2004; 279 (20): 21406-14.                  

???pagination.result.page??? 1 2 ???pagination.result.next???