Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (79) GO Terms (3) Nucleotides (303) Proteins (132) Interactants (141) Wiki
XB-GENEPAGE-959273

Papers associated with mink1



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2., Colleluori V, Khokha MK., Dev Biol. March 1, 2023; 495 42-53.                            


Functional Characterization of a Spectrum of Novel Romano-Ward Syndrome KCNQ1 Variants., Rinné S, Oertli A, Nagel C, Tomsits P, Jenewein T, Kääb S, Kauferstein S, Loewe A, Beckmann BM, Decher N., Int J Mol Sci. January 10, 2023; 24 (2):                       


The study of the determinants controlling Arpp19 phosphatase-inhibitory activity reveals an Arpp19/PP2A-B55 feedback loop., Labbé JC, Vigneron S, Méchali F, Robert P, Roque S, Genoud C, Goguet-Rubio P, Barthe P, Labesse G, Cohen-Gonsaud M, Castro A, Lorca T., Nat Commun. June 11, 2021; 12 (1): 3565.                    


Bistable, Biphasic Regulation of PP2A-B55 Accounts for the Dynamics of Mitotic Substrate Phosphorylation., Kamenz J, Gelens L, Ferrell JE., Curr Biol. February 22, 2021; 31 (4): 794-808.e6.                              


ENSA and ARPP19 differentially control cell cycle progression and development., Hached K, Goguet P, Charrasse S, Vigneron S, Sacristan MP, Lorca T, Castro A., J Cell Biol. February 4, 2019; 218 (2): 541-558.                


Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress., Wang F, Zhu S, Fisher LA, Wang W, Oakley GG, Li C, Peng A., Sci Rep. February 8, 2018; 8 (1): 2683.            


Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1., Ma S, Vigneron S, Robert P, Strub JM, Cianferani S, Castro A, Lorca T., J Cell Sci. April 1, 2016; 129 (7): 1329-39.            


The master Greatwall kinase, a critical regulator of mitosis and meiosis., Vigneron S, Robert P, Hached K, Sundermann L, Charrasse S, Labbé JC, Castro A, Lorca T., Int J Dev Biol. January 1, 2016; 60 (7-8-9): 245-254.


Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit., Heim A, Konietzny A, Mayer TU., EMBO Rep. November 1, 2015; 16 (11): 1501-10.


PP1 inactivates Greatwall to release PP2A-B55 from mitotic confinement., Mochida S., EMBO Rep. November 1, 2015; 16 (11): 1411-2.


Calcium signaling and meiotic exit at fertilization in Xenopus egg., Tokmakov AA, Stefanov VE, Iwasaki T, Sato K, Fukami Y., Int J Mol Sci. October 15, 2014; 15 (10): 18659-76.    


Exploiting polypharmacology for drug target deconvolution., Gujral TS, Peshkin L, Kirschner MW., Proc Natl Acad Sci U S A. April 1, 2014; 111 (13): 5048-53.        


Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation., Mochida S., FEBS J. February 1, 2014; 281 (4): 1159-69.


Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals., Álvarez-Fernández M, Sánchez-Martínez R, Sanz-Castillo B, Gan PP, Sanz-Flores M, Trakala M, Ruiz-Torres M, Lorca T, Castro A, Malumbres M., Proc Natl Acad Sci U S A. October 22, 2013; 110 (43): 17374-9.


On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis., Hunt T., Adv Biol Regul. May 1, 2013; 53 (2): 173-8.


Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression., Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S., PLoS Genet. January 1, 2013; 9 (7): e1003575.              


Mink1 regulates β-catenin-independent Wnt signaling via Prickle phosphorylation., Daulat AM, Luu O, Sing A, Zhang L, Wrana JL, McNeill H, Winklbauer R, Angers S., Mol Cell Biol. January 1, 2012; 32 (1): 173-85.


Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling., Mikryukov A, Moss T., PLoS One. January 1, 2012; 7 (9): e43330.                


Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor., Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T., Nat Commun. January 1, 2012; 3 1059.              


Dynamic regulation of Emi2 by Emi2-bound Cdk1/Plk1/CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs., Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N., Dev Cell. September 13, 2011; 21 (3): 506-19.              


Regulation of Greatwall kinase during Xenopus oocyte maturation., Yamamoto TM, Blake-Hodek K, Williams BC, Lewellyn AL, Goldberg ML, Maller JL., Mol Biol Cell. July 1, 2011; 22 (13): 2157-64.            


Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts., Mochida S, Ikeo S, Gannon J, Hunt T., EMBO J. September 16, 2009; 28 (18): 2777-85.


Serial perturbation of MinK in IKs implies an alpha-helical transmembrane span traversing the channel corpus., Chen H, Goldstein SA., Biophys J. October 1, 2007; 93 (7): 2332-40.


XRab40 and XCullin5 form a ubiquitin ligase complex essential for the noncanonical Wnt pathway., Lee RH, Iioka H, Ohashi M, Iemura S, Natsume T, Kinoshita N., EMBO J. August 8, 2007; 26 (15): 3592-606.


Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study., Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wülfing T, Siebrands C, Engeland B, Mönnig G, Haverkamp W, Brinkmann B, Schulze-Bahr E., Int J Legal Med. May 1, 2006; 120 (3): 129-37.


The MinK-related peptides., McCrossan ZA, Abbott GW., Neuropharmacology. November 1, 2004; 47 (6): 787-821.


Acute effects of dronedarone on both components of the cardiac delayed rectifier K+ current, HERG and KvLQT1/minK potassium channels., Thomas D, Kathofer S, Zhang W, Wu K, Wimmer AB, Zitron E, Kreye VA, Katus HA, Schoels W, Karle CA, Kiehn J., Br J Pharmacol. November 1, 2003; 140 (5): 996-1002.


Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex., Chen H, Kim LA, Rajan S, Xu S, Goldstein SA., Neuron. September 25, 2003; 40 (1): 15-23.


Human beta(3)-adrenoreceptors couple to KvLQT1/MinK potassium channels in Xenopus oocytes via protein kinase C phosphorylation of the KvLQT1 protein., Kathöfer S, Röckl K, Zhang W, Thomas D, Katus H, Kiehn J, Kreye V, Schoels W, Karle C., Naunyn Schmiedebergs Arch Pharmacol. August 1, 2003; 368 (2): 119-26.


Pore- and state-dependent cadmium block of I(Ks) channels formed with MinK-55C and wild-type KCNQ1 subunits., Chen H, Sesti F, Goldstein SA., Biophys J. June 1, 2003; 84 (6): 3679-89.


RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies., Anantharam A, Lewis A, Panaghie G, Gordon E, McCrossan ZA, Lerner DJ, Abbott GW., J Biol Chem. April 4, 2003; 278 (14): 11739-45.


Clinical and electrophysiological characterization of a novel mutation (F193L) in the KCNQ1 gene associated with long QT syndrome., Yamaguchi M, Shimizu M, Ino H, Terai H, Hayashi K, Mabuchi H, Hoshi N, Higashida H., Clin Sci (Lond). April 1, 2003; 104 (4): 377-82.


Inhibitory effects of volatile anesthetics on currents produced on heterologous expression of KvLQT1 and minK in Xenopus oocytes., Chen X, Yamakage M, Yamada Y, Tohse N, Namiki A., Vascul Pharmacol. July 1, 2002; 39 (1-2): 33-8.


A truncated splice variant of KCNQ1 cloned from rat heart., Yamada Y, Chen X, Kobayashi T, Kamada Y, Nagashima M, Tsutsuura M, Seki S, Yamakage M, Namiki A, Tohse N., Biochem Biophys Res Commun. June 7, 2002; 294 (2): 199-204.


Inhibition of cardiac potassium currents by pentobarbital., Bachmann A, Mueller S, Kopp K, Brueggemann A, Suessbrich H, Gerlach U, Busch AE., Naunyn Schmiedebergs Arch Pharmacol. January 1, 2002; 365 (1): 29-37.


Location and orientation of minK within the I(Ks) potassium channel complex., Tapper AR, George AL., J Biol Chem. October 12, 2001; 276 (41): 38249-54.


MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances expression and speeds activation., Yu H, Wu J, Potapova I, Wymore RT, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson RB, El-Maghrabi MR, Benjamin W, Dixon J, McKinnon D, Cohen IS, Wymore R., Circ Res. June 22, 2001; 88 (12): E84-7.


minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel?, Zhang M, Jiang M, Tseng GN., Circ Res. May 25, 2001; 88 (10): 1012-9.


Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome., Seebohm G, Scherer CR, Busch AE, Lerche C., J Biol Chem. April 27, 2001; 276 (17): 13600-5.


Molecular impact of MinK on the enantiospecific block of I(Ks) by chromanols., Lerche C, Seebohm G, Wagner CI, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE., Br J Pharmacol. December 1, 2000; 131 (8): 1503-6.


KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel., Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J., EMBO J. December 1, 2000; 19 (23): 6326-30.


MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium., Sesti F, Tai KK, Goldstein SA., Biophys J. September 1, 2000; 79 (3): 1369-78.


MinK subdomains that mediate modulation of and association with KvLQT1., Tapper AR, George AL., J Gen Physiol. September 1, 2000; 116 (3): 379-90.          


Functional coupling of human beta 3-adrenoreceptors to the KvLQT1/MinK potassium channel., Kathöfer S, Zhang W, Karle C, Thomas D, Schoels W, Kiehn J., J Biol Chem. September 1, 2000; 275 (35): 26743-7.


Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991., Wang HS, Brown BS, McKinnon D, Cohen IS., Mol Pharmacol. June 1, 2000; 57 (6): 1218-23.


A constitutively open potassium channel formed by KCNQ1 and KCNE3., Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ., Nature. January 13, 2000; 403 (6766): 196-9.


Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome., Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E, Bryskin R, Schwartz PJ, Brown AM., Hum Mol Genet. August 1, 1999; 8 (8): 1499-507.


Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits., Franqueza L, Lin M, Shen J, Splawski I, Keating MT, Sanguinetti MC., J Biol Chem. July 23, 1999; 274 (30): 21063-70.


PKC modulation of minK current involves multiple phosphorylation sites., Lo CF, Numann R., Ann N Y Acad Sci. April 30, 1999; 868 431-3.


Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1., Yang YL, Guo L, Xu S, Holland CA, Kitamura T, Hunter K, Cunningham JM., Nat Genet. February 1, 1999; 21 (2): 216-9.

???pagination.result.page??? 1 2 ???pagination.result.next???