Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (18) GO Terms (2) Nucleotides (132) Proteins (63) Interactants (266) Wiki
XB-GENEPAGE-981256

Papers associated with ptprc



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Characterization of lineage restricted forms of a Xenopus CD45 homologue., Barritt LC, Turpen JB., Dev Comp Immunol. January 1, 1995; 19 (6): 525-36.


Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo., Turpen JB, Kelley CM, Mead PE, Zon LI., Immunity. September 1, 1997; 7 (3): 325-34.


In vitro thymocyte differentiation in MHC class I-negative Xenopus larvae., Robert J, Sung M, Cohen N., Dev Comp Immunol. May 1, 2001; 25 (4): 323-36.


Role of the thrombopoietin (TPO)/Mpl system: c-Mpl-like molecule/TPO signaling enhances early hematopoiesis in Xenopus laevis., Kakeda M, Kyuno J, Kato T, Nishikawa M, Asashima M., Dev Growth Differ. February 1, 2002; 44 (1): 63-75.                


HoxA3 is an apical regulator of haemogenic endothelium., Iacovino M, Chong D, Szatmari I, Hartweck L, Rux D, Caprioli A, Cleaver O, Kyba M., Nat Cell Biol. January 1, 2011; 13 (1): 72-8.        


The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration., King MW, King MW, Neff AW, Mescher AL., Anat Rec (Hoboken). October 1, 2012; 295 (10): 1552-61.


Expression analysis of XPhyH-like during development and tail regeneration in Xenopus tadpoles: possible role of XPhyH-like expressing immune cells in impaired tail regenerative ability., Naora Y, Hishida Y, Fukazawa T, Kunieda T, Kubo T., Biochem Biophys Res Commun. February 8, 2013; 431 (2): 152-7.              


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny., Nimmo R, Ciau-Uitz A, Ruiz-Herguido C, Soneji S, Bigas A, Patient R, Enver T., Dev Cell. August 12, 2013; 26 (3): 237-49.                    


Initiation and maintenance of pluripotency gene expression in the absence of cohesin., Lavagnolli T, Gupta P, Hörmanseder E, Mira-Bontenbal H, Dharmalingam G, Carroll T, Gurdon JB, Fisher AG, Merkenschlager M., Genes Dev. January 1, 2015; 29 (1): 23-38.              


Hematopoiesis: from start to immune reconstitution potential., Liang HC, Zúñiga-Pflücker JC., Stem Cell Res Ther. April 11, 2015; 6 52.        


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS, Herrera-Rojas M, Larrain J., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse., Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, Guille M, Röszer T., J Leukoc Biol. September 1, 2017; 102 (3): 845-855.          


RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis., Kim H, Lee YS, Kim SM, Jang S, Choi H, Lee JW, Kim TD, Kim VN., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.                                  


Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis., Otsuka-Yamaguchi R, Kitada M, Kuroda Y, Kushida Y, Wakao S, Dezawa M., Stem Cell Res. May 1, 2021; 53 102341.          


RedoxiFluor: A microplate technique to quantify target-specific protein thiol redox state in relative percentage and molar terms., Tuncay A, Noble A, Guille M, Cobley JN., Free Radic Biol Med. March 1, 2022; 181 118-129.


Cellular responses in the FGF10-mediated improvement of hindlimb regenerative capacity in Xenopus laevis revealed by single-cell transcriptomics., Yanagi N, Kato S, Fukazawa T, Kubo T., Dev Growth Differ. August 1, 2022; 64 (6): 266-278.      


FGFR1 variants contributed to families with tooth agenesis., Yao S, Zhou X, Gu M, Zhang C, Bartsch O, Vona B, Fan L, Ma L, Pan Y., Hum Genomics. October 13, 2023; 17 (1): 93.            

???pagination.result.page??? 1