Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (20) GO Terms (5) Nucleotides (54) Proteins (36) Interactants (273) Wiki
XB-GENEPAGE-478344

Papers associated with vax1



Limit to papers also referencing gene:
3 paper(s) referencing morpholinos

Results 1 - 20 of 20 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain., Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P., Development. July 1, 1998; 125 (14): 2599-610.            


Expression of the Vax family homeobox genes suggests multiple roles in eye development., Ohsaki K, Morimitsu T, Ishida Y, Kominami R, Takahashi N., Genes Cells. May 1, 1999; 4 (5): 267-76.


A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis., Barbieri AM, Lupo G, Bulfone A, Andreazzoli M, Mariani M, Fougerousse F, Consalez GG, Borsani G, Beckmann JS, Barsacchi G, Ballabio A, Banfi S., Proc Natl Acad Sci U S A. September 14, 1999; 96 (19): 10729-34.            


Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system., Hallonet M, Hollemann T, Pieler T, Gruss P., Genes Dev. December 1, 1999; 13 (23): 3106-14.    


A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1., Pera EM, De Robertis EM., Mech Dev. September 1, 2000; 96 (2): 183-95.                  


Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis., Liu Y, Lupo G, Marchitiello A, Gestri G, He RQ, Banfi S, Barsacchi G., Mech Dev. January 1, 2001; 100 (1): 115-8.                


Induction and patterning of the telencephalon in Xenopus laevis., Lupo G, Harris WA, Barsacchi G, Vignali R., Development. December 1, 2002; 129 (23): 5421-36.                            


Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity., Take-uchi M, Clarke JD, Wilson SW., Development. March 1, 2003; 130 (5): 955-68.


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y, Pieler T, Hollemann T., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling., Lupo G, Liu Y, Qiu R, Chandraratna RA, Barsacchi G, He RQ, Harris WA., Development. April 1, 2005; 132 (7): 1737-48.                    


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain., Zhao L, Saitsu H, Sun X, Shiota K, Ishibashi M., Mech Dev. January 1, 2010; 127 (1-2): 62-72.                


A novel mechanism for the transcriptional regulation of Wnt signaling in development., Vacik T, Stubbs JL, Lemke G., Genes Dev. September 1, 2011; 25 (17): 1783-95.      


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE, Iannattone S, Johnston J, Zaremberg V, McFarlane S., Gene Expr Patterns. January 1, 2012; 12 (7-8): 219-27.                            


RFX2 is broadly required for ciliogenesis during vertebrate development., Chung MI, Peyrot SM, LeBoeuf S, Park TJ, McGary KL, Marcotte EM, Wallingford JB., Dev Biol. March 1, 2012; 363 (1): 155-65.                                                          


Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata., Lee J, Lee BK, Gross JM., Hum Mol Genet. September 1, 2013; 22 (17): 3568-82.


Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling., Wang X, Lupo G, He R, Barsacchi G, Harris WA, Liu Y., Neural Dev. March 20, 2015; 10 7.              


The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery., Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelly MR, Kim S, Park TJ, Braun DA, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-Lami HA, Yeung Y, Choi YJ, University of Washington Center for Mendelian Genomics, Duffourd Y, Faivre L, Rivière JB, Chen J, Liu KJ, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB., Nat Genet. June 1, 2016; 48 (6): 648-56.                              


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T, Jandt E, Ranft S, Lokapally A, Neuhaus H, Perron M, Hollemann T., Proc Natl Acad Sci U S A. September 6, 2016; 113 (36): 10103-8.                    


Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development., Kim Y, Jeong Y, Kwon K, Ismail T, Lee HK, Kim C, Park JW, Kwon OS, Kang BS, Lee DS, Park TJ, Kwon T, Lee HS., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.                

Page(s): 1