Results 1 - 15 of 15 results
Histological and gene-expression analyses of pyloric sphincter formation during stomach metamorphosis in Xenopus laevis. , Nagura K, Ikeda T, Hasebe T , Satou-Kobayashi Y, Udagawa S, Shigenobu S, Ishizuya-Oka A , Taira M ., Dev Biol. September 21, 2024; 517 100-116.
A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone. , Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T , Wills AE , Wallingford JB ., Dev Dyn. May 1, 2021; 250 (5): 717-731.
RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus. , Janesick A , Tang W, Shioda T, Blumberg B ., Development. September 17, 2018; 145 (18):
Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis. , Gere-Becker MB, Pommerenke C, Lingner T, Pieler T ., Development. June 8, 2018; 145 (12):
A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. , Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM , Monsoro-Burq AH ., PLoS Biol. October 19, 2017; 15 (10): e2004045.
An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. , McQueen C, Pownall ME ., Mech Dev. August 1, 2017; 146 1-9.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y , Colozza G , Zhang K, Moriyama Y , Ploper D, Sosa EA, Benitez MDJ, De Robertis EM ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M, Yasuoka Y , Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H , Ogino H , Fukui A , Taira M , Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y , Ploper D, Sosa EA, Colozza G , Moriyama Y , Benitez MD, Zhang K, Merkurjev D, De Robertis EM ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Dual roles of Akirin2 protein during Xenopus neural development. , Liu X, Xia Y, Tang J, Ma L, Li C, Ma P, Mao B ., J Biol Chem. April 7, 2017; 292 (14): 5676-5684.
Xenopus Nkx6.1 and Nkx6.2 are required for mid- hindbrain boundary development. , Ma P, Xia Y, Ma L, Zhao S, Mao B ., Dev Genes Evol. July 1, 2013; 223 (4): 253-9.
Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development. , Xia YJ, Zhao SH, Mao BY ., Dongwuxue Yanjiu. December 1, 2012; 33 (E5-6): E82-8.
Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. , Ma P, Zhao S, Zeng W, Yang Q, Li C, Lv X, Zhou Q, Mao B ., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.
Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection. , Dichmann DS , Harland RM ., Dev Biol. January 15, 2011; 349 (2): 378-86.
Cloning and developmental expression of the Xenopus Nkx6 genes. , Zhao S, Jiang H, Wang W, Mao B ., Dev Genes Evol. June 1, 2007; 217 (6): 477-83.