Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (890) Wiki
XB-GENEPAGE-853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct., Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM, Muallem S., J Physiol. August 15, 2008; 586 (16): 3813-24.


Enteric oxalate secretion is not directly mediated by the human CFTR chloride channel., Freel RW, Hatch M., Urol Res. August 1, 2008; 36 (3-4): 127-31.


A synthetic prostone activates apical chloride channels in A6 epithelial cells., Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC., Am J Physiol Gastrointest Liver Physiol. August 1, 2008; 295 (2): G234-51.


A possible role for intracellular GSH in spontaneous reaction of a cysteine (T338C) engineered into the Cystic Fibrosis Transmembrane Conductance Regulator., Liu X., Biometals. June 1, 2008; 21 (3): 277-87.


Imaging CFTR in its native environment., Schillers H., Pflugers Arch. April 1, 2008; 456 (1): 163-77.


Mutations at arginine 352 alter the pore architecture of CFTR., Cui G, Zhang ZR, O'Brien AR, Song B, McCarty NA., J Membr Biol. March 1, 2008; 222 (2): 91-106.


Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating., Beck EJ, Yang Y, Yaemsiri S, Raghuram V., J Biol Chem. February 22, 2008; 283 (8): 4957-66.


The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP., Zifarelli G, Pusch M., J Gen Physiol. February 1, 2008; 131 (2): 109-16.          


Reconstitution of a chemical defense signaling pathway in a heterologous system., Cohen SA, Hatt H, Kubanek J, McCarty NA., J Exp Biol. February 1, 2008; 211 (Pt 4): 599-605.


The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus., Shaw JR, Sato JD, VanderHeide J, LaCasse T, Stanton CR, Lankowski A, Stanton SE, Chapline C, Coutermarsh B, Barnaby R, Karlson K, Stanton BA., Cell Physiol Biochem. January 1, 2008; 22 (1-4): 69-78.


Characterization of SLC26A9, facilitation of Cl(-) transport by bicarbonate., Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F, Ehrenfeld J., Cell Physiol Biochem. January 1, 2008; 22 (1-4): 15-30.


State-dependent inhibition of cystic fibrosis transmembrane conductance regulator chloride channels by a novel peptide toxin., Fuller MD, Thompson CH, Zhang ZR, Freeman CS, Schay E, Szakács G, Bakos E, Sarkadi B, McMaster D, French RJ, Pohl J, Kubanek J, McCarty NA., J Biol Chem. December 28, 2007; 282 (52): 37545-55.


CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium., Sommer D, Bogdan R, Berger J, Peters DM, Morty RE, Clauss WG, Fronius M., Respir Physiol Neurobiol. August 15, 2007; 158 (1): 97-106.


Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site., Treharne KJ, Crawford RM, Xu Z, Chen JH, Best OG, Schulte EA, Gruenert DC, Wilson SM, Sheppard DN, Kunzelmann K, Mehta A., J Biol Chem. April 6, 2007; 282 (14): 10804-13.


Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC., Suaud L, Yan W, Carattino MD, Robay A, Kleyman TR, Rubenstein RC., Am J Physiol Cell Physiol. April 1, 2007; 292 (4): C1553-61.


WNK1 and WNK4 modulate CFTR activity., Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC, Ellison DH., Biochem Biophys Res Commun. February 16, 2007; 353 (3): 535-40.


Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes., Suaud L, Yan W, Rubenstein RC., Am J Physiol Cell Physiol. January 1, 2007; 292 (1): C603-11.


An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis., Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A, Schmidt A, Grego T, Jansakul C, Amaral MD, Schreiber R, Kunzelmann K., Mol Pharmacol. January 1, 2007; 71 (1): 366-76.


Functional characterization of a novel CFTR mutation P67S identified in a patient with atypical cystic fibrosis., Kraus C, Reis A, Naehrlich L, Dötsch J, Korbmacher C, Rauh R., Cell Physiol Biochem. January 1, 2007; 19 (5-6): 239-48.


Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1)., Sato JD, Chapline MC, Thibodeau R, Frizzell RA, Stanton BA., Cell Physiol Biochem. January 1, 2007; 20 (1-4): 91-8.


2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties., Artigas P, Al'aref SJ, Hobart EA, Díaz LF, Sakaguchi M, Straw S, Andersen OS., Mol Pharmacol. December 1, 2006; 70 (6): 2015-26.


Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle., Csanády L, Nairn AC, Gadsby DC., J Gen Physiol. November 1, 2006; 128 (5): 523-33.            


In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer., Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC., EMBO J. October 18, 2006; 25 (20): 4728-39.


Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels., Bewley MS, Pena JT, Plesch FN, Decker SE, Weber GJ, Forrest JN., Am J Physiol Regul Integr Comp Physiol. October 1, 2006; 291 (4): R1157-64.


CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore., Serrano JR, Liu X, Borg ER, Alexander CS, Shaw CF, Dawson DC., Biophys J. September 1, 2006; 91 (5): 1737-48.


NHE3 inhibits PKA-dependent functional expression of CFTR by NHERF2 PDZ interactions., Favia M, Fanelli T, Bagorda A, Di Sole F, Reshkin SJ, Suh PG, Guerra L, Casavola V., Biochem Biophys Res Commun. August 25, 2006; 347 (2): 452-9.


Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol., Liu X, Alexander C, Serrano J, Borg E, Dawson DC., J Biol Chem. March 24, 2006; 281 (12): 8275-85.


CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney., Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC., J Clin Invest. March 1, 2006; 116 (3): 797-807.


Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride., Ratner MA, Decker SE, Aller SG, Weber G, Forrest JN., J Exp Zool A Comp Exp Biol. March 1, 2006; 305 (3): 259-67.


Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion., Palmer ML, Lee SY, Carlson D, Fahrenkrug S, O'Grady SM., J Cell Physiol. March 1, 2006; 206 (3): 759-70.


Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102., Weber GJ, Mehr AP, Sirota JC, Aller SG, Decker SE, Dawson DC, Forrest JN., Am J Physiol Cell Physiol. March 1, 2006; 290 (3): C793-801.


Anion exchangers in flux: functional differences between human and mouse SLC26A6 polypeptides., Alper SL, Stewart AK, Chernova MN, Zolotarev AS, Clark JS, Vandorpe DH., Novartis Found Symp. January 1, 2006; 273 107-19; discussion 119-25, 261-4.


Regulatory interaction between CFTR and the SLC26 transporters., Shcheynikov N, Ko SB, Zeng W, Choi JY, Dorwart MR, Thomas PJ, Muallem S., Novartis Found Symp. January 1, 2006; 273 177-86; discussion 186-92, 261-4.


The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes., Edwards JC., J Membr Biol. January 1, 2006; 213 (1): 39-46.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA, Salim M, Peracchia LL, Peracchia C., J Membr Biol. January 1, 2006; 214 (1): 1-8.


The block of CFTR by scorpion venom is state-dependent., Fuller MD, Zhang ZR, Cui G, McCarty NA., Biophys J. December 1, 2005; 89 (6): 3960-75.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J, Pitonzo D, Skach WR., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


Inhibition of ClC-2 chloride channels by a peptide component or components of scorpion venom., Thompson CH, Fields DM, Olivetti PR, Fuller MD, Zhang ZR, Kubanek J, McCarty NA., J Membr Biol. November 1, 2005; 208 (1): 65-76.


Cl- interference with the epithelial Na+ channel ENaC., Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K., J Biol Chem. September 9, 2005; 280 (36): 31587-94.


Synergic action of insulin and genistein on Na+/K+/2Cl- cotransporter in renal epithelium., Ueda-Nishimura T, Niisato N, Miyazaki H, Naito Y, Yoshida N, Yoshikawa T, Nishino H, Marunaka Y., Biochem Biophys Res Commun. July 15, 2005; 332 (4): 1042-52.


4-Chlorobenzo[F]isoquinoline (CBIQ), a novel activator of CFTR and DeltaF508 CFTR., Murthy M, Pedemonte N, MacVinish L, Galietta L, Cuthbert A., Eur J Pharmacol. June 1, 2005; 516 (2): 118-24.


CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes., Nagel G, Barbry P, Chabot H, Brochiero E, Hartung K, Grygorczyk R., J Physiol. May 1, 2005; 564 (Pt 3): 671-82.


Functional interaction between CFTR and Cx45 gap junction channels expressed in oocytes., Kotsias BA, Peracchia C., J Membr Biol. February 1, 2005; 203 (3): 143-50.


Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA., Csanády L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC., J Gen Physiol. February 1, 2005; 125 (2): 171-86.                  


Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain., Csanády L, Chan KW, Nairn AC, Gadsby DC., J Gen Physiol. January 1, 2005; 125 (1): 43-55.              


CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore., Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC., Biophys J. December 1, 2004; 87 (6): 3826-41.


Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2., Chen Y, Button B, Altenberg GA, Reuss L., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1436-44.


Inhibition of CFTR channels by a peptide toxin of scorpion venom., Fuller MD, Zhang ZR, Cui G, Kubanek J, McCarty NA., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1328-41.


Mechanism of activation of Xenopus CFTR by stimulation of PKC., Chen Y, Altenberg GA, Reuss L., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1256-63.


ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC)., Mo L, Wills NK., J Membr Biol. November 1, 2004; 202 (1): 21-37.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???