Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (43) GO Terms (4) Nucleotides (181) Proteins (33) Interactants (275) Wiki
XB-GENEPAGE-5827395

Papers associated with mhc2-dab



???displayGene.coCitedPapers???
8 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Advances in the Xenopus immunome: Diversification, expansion, and contraction., Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J., Dev Comp Immunol. August 1, 2023; 145 104734.    


Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease., Iovino L, Giusti V, Pischedda F, Giusto E, Plotegher N, Marte A, Battisti I, Di Iacovo A, Marku A, Piccoli G, Bandopadhyay R, Perego C, Bonifacino T, Bonanno G, Roseti C, Bossi E, Arrigoni G, Bubacco L, Greggio E, Hilfiker S, Civiero L., Acta Neuropathol. July 1, 2022; 144 (1): 81-106.                    


Proteomic screen reveals diverse protein transport between connected neurons in the visual system., Schiapparelli LM, Sharma P, He HY, Li J, Shah SH, McClatchy DB, Ma Y, Liu HH, Goldberg JL, Yates JR, Cline HT., Cell Rep. January 25, 2022; 38 (4): 110287.                                  


The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus., Beckers A, Fuhl F, Ott T, Boldt K, Brislinger MM, Walentek P, Schuster-Gossler K, Hegermann J, Alten L, Kremmer E, Przykopanski A, Serth K, Ueffing M, Blum M, Gossler A., Sci Rep. June 25, 2021; 11 (1): 13333.                    


α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement., Chu X, Tae HS, Xu Q, Jiang T, Adams DJ, Yu R., ACS Chem Neurosci. October 16, 2019; 10 (10): 4328-4336.  


Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons., Juárez-Morales JL, Martinez-De Luna RI, Zuber ME, Roberts A, Lewis KE., Dev Neurobiol. September 1, 2017; 77 (8): 1007-1020.    


Copy number variation and genetic diversity of MHC Class IIb alleles in an alien population of Xenopus laevis., Mable BK, Kilbride E, Viney ME, Tinsley RC., Immunogenetics. October 1, 2015; 67 (10): 591-603.    


Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish., Evason KJ, Francisco MT, Juric V, Balakrishnan S, Lopez Pazmino Mdel P, Gordan JD, Kakar S, Spitsbergen J, Goga A, Stainier DY., PLoS Genet. July 1, 2015; 11 (7): e1005305.            


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y, Kurth T, Medeiros DM, Tazaki A, Ramm R, Epperlein HH., Sci Rep. June 18, 2015; 5 11428.                


Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts., Cerqueira DM, Tran U, Romaker D, Abreu JG, Wessely O., Dev Biol. October 1, 2014; 394 (1): 54-64.                                          


Regulation of G-protein signaling via Gnas is required to regulate proximal tubular growth in the Xenopus pronephros., Zhang B, Romaker D, Ferrell N, Wessely O., Dev Biol. April 1, 2013; 376 (1): 31-42.                        


Kidins220/ARMS is dynamically expressed during Xenopus laevis development., Marracci S, Giannini M, Vitiello M, Andreazzoli M, Dente L., Int J Dev Biol. January 1, 2013; 57 (9-10): 787-92.            


The Lin28 cold-shock domain remodels pre-let-7 microRNA., Mayr F, Schütz A, Döge N, Heinemann U., Nucleic Acids Res. August 1, 2012; 40 (15): 7492-506.            


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L, Wen L, Gong Y, Mei G, Liu J, Chen Y, Peng T., PLoS One. January 1, 2012; 7 (6): e38939.                                              


The biochemical anatomy of cortical inhibitory synapses., Heller EA, Zhang W, Selimi F, Earnheart JC, Ślimak MA, Santos-Torres J, Ibañez-Tallon I, Aoki C, Chait BT, Heintz N., PLoS One. January 1, 2012; 7 (6): e39572.            


Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco., Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G., PLoS One. January 1, 2012; 7 (12): e52439.                    


Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus., Acosta H, López SL, Revinski DR, Carrasco AE., Development. June 1, 2011; 138 (12): 2567-79.                          


Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos., Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, Chen GD, Lee MT, Hwang PP, Kawakami K, Chang CC, Huang CJ., Nucleic Acids Res. August 1, 2010; 38 (14): 4635-50.              


Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies., Li J, Wang Y, Chiu SL, Cline HT., Front Neural Circuits. February 26, 2010; 4 6.              


TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling., Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, Satoh K, Wiercinska E, Yang W, Shi L, Tanaka A, Nakano N, Mommaas AM, Shibuya H, Ten Dijke P, Kato M., Mol Cell. January 15, 2010; 37 (1): 123-34.                                      


Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling., Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S., J Neurosci. January 13, 2010; 30 (2): 685-93.            


FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy., Wuebbles RD, Hanel ML, Jones PL., Dis Model Mech. January 1, 2009; 2 (5-6): 267-74.                  


Overexpression of 5-HT2B receptor results in retinal dysplasia and defective ocular morphogenesis in Xenopus embryos., Reisoli E, De Lucchini S, Anelli T, Biagioni S, Nardi I, Ori M., Dev Biol. December 9, 2008; 1244 32-9.          


HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus., Nagao K, Taniyama Y, Kietzmann T, Doi T, Komuro I, Morishita R., J Biol Chem. April 25, 2008; 283 (17): 11841-9.                        


Changes of gamma-tubulin expression and distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo., Liu J, Lessman CA., Gene Expr Patterns. April 1, 2008; 8 (4): 237-47.    


Ectopic germline cells in embryos of Xenopus laevis., Ikenishi K, Ohno T, Komiya T., Dev Growth Differ. September 1, 2007; 49 (7): 561-70.      


Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis., Ramanathan S, Combes D, Molinari M, Simmers J, Sillar KT., Eur J Neurosci. October 1, 2006; 24 (7): 1907-22.                  


Control of muscle regeneration in the Xenopus tadpole tail by Pax7., Chen Y, Chen Y, Lin G, Slack JM., Development. June 1, 2006; 133 (12): 2303-13.    


Limb regeneration in Xenopus laevis froglet., Suzuki M, Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K, Tamura K., ScientificWorldJournal. May 12, 2006; 6 Suppl 1 26-37.        


XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning., Onuma Y, Yeo CY, Whitman M., Development. January 1, 2006; 133 (2): 237-50.                                      


Connexin 43 expression in glial cells of developing rhombomeres of Xenopus laevis., Katbamna B, Jelaso AM, Ide CF., Int J Dev Neurosci. February 1, 2004; 22 (1): 47-55.            


A trial for induction of supernumerary primordial germ cells in Xenopus tadpoles by injecting RNA of Xenopus vasa homologue into germline cells of 32-cell embryos., Ikenishi K, Yamakita S., Dev Growth Differ. January 1, 2003; 45 (5-6): 417-26.                  


Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones., Campbell DS, Regan AG, Lopez JS, Tannahill D, Harris WA, Holt CE., J Neurosci. November 1, 2001; 21 (21): 8538-47.              


Meiotic maturation induces animal-vegetal asymmetric distribution of aPKC and ASIP/PAR-3 in Xenopus oocytes., Nakaya M, Fukui A, Izumi Y, Akimoto K, Asashima M, Ohno S., Development. December 1, 2000; 127 (23): 5021-31.                


XCS-1, a maternally expressed gene product involved in regulating mitosis in Xenopus., Nakamura H, Wu C, Kuang J, Larabell C, Etkin LD., J Cell Sci. July 1, 2000; 113 ( Pt 13) 2497-505.                


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC, Constantine-Paton M., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos., Roberts A, Walford A., Acta Biol Hung. January 1, 1996; 47 (1-4): 371-84.


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K, Tang TL, Neel BG, Sokol SY., Development. December 1, 1995; 121 (12): 3979-88.              


Exon-intron organization of Xenopus MHC class II beta chain genes., Kobari F, Sato K, Shum BP, Tochinai S, Katagiri M, Ishibashi T, Du Pasquier L, Flajnik MF, Kasahara M., Immunogenetics. January 1, 1995; 42 (5): 376-85.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY, Liposits ZS, Tóth P, Trasti SL, Maderdrut JL, Merchenthaler I., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J, Smith JC., Development. February 1, 1987; 99 (2): 197-210.              


Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis., van Mier P, ten Donkelaar HJ., Anat Embryol (Berl). January 1, 1984; 170 (3): 295-306.


Development of peroxisomes in amphibians. II. Cytochemical and biochemical studies on the liver, kidney, and pancreas., Dauca M, Calvert R, Ménard D, Hugon JS, Hourdry J., J Exp Zool. September 20, 1982; 223 (1): 57-65.

???pagination.result.page??? 1