Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (51) GO Terms (12) Nucleotides (243) Proteins (80) Interactants (541) Wiki
XB-GENEPAGE-482292

Papers associated with ep300



Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 50 of 50 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis., Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O., Sci Total Environ. May 1, 2024; 923 170949.   


A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB, Willsey HR, Xu Y, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T., Cell Syst. August 17, 2021; 12 (11): 1094-1107.e6.   


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9   


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS, Truchado-Garcia M, Iruvanti S, Harland RM., Development. August 9, 2019; 146 (15):   


Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation., Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.   


Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis., Fu L, Yin J, Shi YB., Gen Comp Endocrinol. January 15, 2019; 271 91-96.   


Transcriptome analysis of regeneration during Xenopus laevis experimental twinning., Sosa EA, Moriyama Y, Ding Y, Tejeda-Muñoz N, Colozza G, De Robertis EM., Int J Dev Biol. January 1, 2019; 63 (6-7): 301-309.


Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program., Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KW., Dev Cell. March 27, 2017; 40 (6): 595-607.e4.


More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology., Buchholz DR., Dev Biol. December 15, 2015; 408 (2): 188-95.   


Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription., Di Cerbo V, Mohn F, Ryan DP, Montellier E, Kacem S, Tropberger P, Kallis E, Holzner M, Hoerner L, Feldmann A, Richter FM, Bannister AJ, Mittler G, Michaelis J, Khochbin S, Feil R, Schuebeler D, Owen-Hughes T, Daujat S, Schneider R., Elife. March 25, 2014; 3 e01632.   


A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome., Tanaka K, Kato A, Angelocci C, Watanabe M, Kato Y., Dev Biol. March 1, 2014; 387 (1): 28-36.   


Brain-specific promoter/exon I.f of the cyp19a1 (aromatase) gene in Xenopus laevis., Nakagawa T, Iwabuchi J., J Steroid Biochem Mol Biol. November 1, 2012; 132 (3-5): 247-55.


Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer., Reid CD, Zhang Y, Zhang Y, Sheets MD, Kessler DS., Dev Biol. August 15, 2012; 368 (2): 231-41.   


The Prdm family: expanding roles in stem cells and development., Hohenauer T, Moore AW., Development. July 1, 2012; 139 (13): 2267-82.   


xCITED2 Induces Neural Genes in Animal Cap Explants of Xenopus Embryos., Yoon J, Kim JH, Lee OJ, Yu SB, Yu SB, Kim JI, Kim SC, Park JB, Lee JY, Kim J., Exp Neurobiol. September 20, 2011; 20 (3): 123-9.   


The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis., Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A., Cell Biosci. September 6, 2011; 1 (1): 30.   


Alternative TFAP2A isoforms have distinct activities in breast cancer., Berlato C, Chan KV, Price AM, Canosa M, Scibetta AG, Hurst HC., Breast Cancer Res. March 4, 2011; 13 (2): R23.   


Intrinsic transition of embryonic stem-cell differentiation into neural progenitors., Kamiya D, Banno S, Sasai N, Ohgushi M, Inomata H, Watanabe K, Kawada M, Yakura R, Kiyonari H, Nakao K, Jakt LM, Nishikawa S, Sasai Y., Nature. February 24, 2011; 470 (7335): 503-9.


Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b) in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus., Ng PK, Chiu SK, Kwong TF, Yu RM, Wong MM, Kong RY., BMC Mol Biol. November 3, 2009; 10 101.   


The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo., Sato Y, Ding A, Heimeier RA, Yousef AF, Mymryk JS, Walfish PG, Shi YB., Cell Res. June 1, 2009; 19 (6): 783-92.


CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene., Langmann T, Lai CC, Weigelt K, Tam BM, Warneke-Wittstock R, Moritz OL, Weber BH., Nucleic Acids Res. November 1, 2008; 36 (20): 6523-34.   


SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis., Paul BD, Buchholz DR, Fu L, Shi YB., J Biol Chem. March 9, 2007; 282 (10): 7472-81.


SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays., Angelov D, Verdel A, An W, Bondarenko V, Hans F, Doyen CM, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S., EMBO J. October 1, 2004; 23 (19): 3815-24.


Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis., Paul BD, Shi YB, Shi YB., Cell Res. December 1, 2003; 13 (6): 459-64.


Molecular cloning and characterization of a hypoxia-responsive CITED3 cDNA from grass carp., Ng PK, Wu RS, Zhang ZP, Mok HO, Randall DJ, Kong RY., Comp Biochem Physiol B Biochem Mol Biol. October 1, 2003; 136 (2): 163-72.


A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription., Huang ZQ, Li J, Sachs LM, Cole PA, Wong J., EMBO J. May 1, 2003; 22 (9): 2146-55.


Tax recruitment of CBP/p300, via the KIX domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent., Georges SA, Giebler HA, Cole PA, Luger K, Laybourn PJ, Nyborg JK., Mol Cell Biol. May 1, 2003; 23 (10): 3392-404.


Direct association of p300 with unmodified H3 and H4 N termini modulates p300-dependent acetylation and transcription of nucleosomal templates., An W, Roeder RG., J Biol Chem. January 17, 2003; 278 (3): 1504-10.


Regulation of GRIP1 and CBP Coactivator activity by Rho GDI modulates estrogen receptor transcriptional enhancement., Su LF, Wang Z, Garabedian MJ., J Biol Chem. October 4, 2002; 277 (40): 37037-44.


Signalling pathways in oocyte meiotic maturation., Schmitt A, Nebreda AR., J Cell Sci. June 15, 2002; 115 (Pt 12): 2457-9.   


Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex., Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA., Genes Dev. June 1, 2002; 16 (11): 1397-411.   


AR possesses an intrinsic hormone-independent transcriptional activity., Huang ZQ, Li J, Wong J., Mol Endocrinol. May 1, 2002; 16 (5): 924-37.


Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin., An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG., Mol Cell. April 1, 2002; 9 (4): 811-21.


p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function., Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ., Mol Cell Biol. January 1, 2002; 22 (1): 127-37.


Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity., Thompson PR, Kurooka H, Nakatani Y, Cole PA., J Biol Chem. September 7, 2001; 276 (36): 33721-9.


Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300., Mori N, Morishita M, Tsukazaki T, Giam CZ, Kumatori A, Tanaka Y, Yamamoto N., Blood. April 1, 2001; 97 (7): 2137-44.


Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription., Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L., Mol Cell Biol. December 1, 2000; 20 (23): 8643-54.


A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction., Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB., Genes Dev. July 1, 2000; 14 (13): 1605-16.   


Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB., Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H, Chen Y., Biochem J. June 15, 2000; 348 Pt 3 591-6.


The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates., Hecht A, Vleminckx K, Vleminckx K, Stemmler MP, van Roy F, Kemler R., EMBO J. April 17, 2000; 19 (8): 1839-50.


p300 requires its histone acetyltransferase activity and SRC-1 interaction domain to facilitate thyroid hormone receptor activation in chromatin., Li J, O'Malley BW, Wong J., Mol Cell Biol. March 1, 2000; 20 (6): 2031-42.


A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo., Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW, Lee JW., J Biol Chem. November 26, 1999; 274 (48): 34283-93.


Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function., Kato Y, Shi Y, Shi Y, He X., J Neurosci. November 1, 1999; 19 (21): 9364-73.   


p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption., Li Q, Imhof A, Collingwood TN, Urnov FD, Wolffe AP., EMBO J. October 15, 1999; 18 (20): 5634-52.


Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis., Koyano-Nakagawa N, Wettstein D, Kintner C., Mol Cell Neurosci. January 1, 1999; 14 (4-5): 327-39.


The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding., Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R., Mol Cell Biol. January 1, 1999; 19 (1): 704-13.


Molecular cloning and expression of Xenopus p300/CBP., Fujii G, Tsuchiya R, Itoh Y, Tashiro K, Hirohashi S., Biochim Biophys Acta. November 26, 1998; 1443 (1-2): 41-54.   


Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo., Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP., EMBO J. November 2, 1998; 17 (21): 6300-15.


Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2., Kim HJ, Lee SK, Na SY, Choi HS, Lee JW, Lee JW., Mol Endocrinol. July 1, 1998; 12 (7): 1038-47.


Antibodies specific for the human retinoblastoma protein identify a family of related polypeptides., Hu QJ, Bautista C, Edwards GM, Defeo-Jones D, Jones RE, Harlow E., Mol Cell Biol. November 1, 1991; 11 (11): 5792-9.

Page(s): 1