Results 1 - 24 of 24 results
A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. , Spruiell Eldridge SL, Teetsel JFK, Torres RA, Ulrich CH , Shah VV , Singh D, Zamora MJ, Zamora S, Sater AK ., Int J Mol Sci. July 8, 2022; 23 (14):
Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles. , Ta AC , Huang LC, McKeown CR , Bestman JE , Van Keuren-Jensen K, Cline HT ., G3 (Bethesda). January 4, 2022; 12 (1):
Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis. , Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J , García-Verdugo JM, Larraín J ., Neural Dev. February 2, 2021; 16 (1): 2.
A Critical E-box in Barhl1 3' Enhancer Is Essential for Auditory Hair Cell Differentiation. , Hou K, Jiang H, Karim MR, Zhong C, Xu Z, Liu L, Guan M, Shao J, Huang X ., Cells. May 15, 2019; 8 (5):
Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis. , Piprek RP, Damulewicz M, Tassan JP , Kloc M , Kubiak JZ ., Dev Genes Evol. May 1, 2019; 229 (2-3): 53-72.
Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. , Thompson AJ, Pillai EK, Dimov IB, Foster SK , Holt CE , Franze K., Elife. January 15, 2019; 8
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L, Chang C , Pawlik KM, Datta A, Johnson LM, Vu T, Napoli JL, Datta PK., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z , Lei A, Xu L, Chen L, Chen Y , Chen Y , Zhang X, Gao Y, Yang X, Zhang M, Cao Y , Cao Y ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. , Martinez-De Luna RI , Ku RY, Aruck AM, Santiago F, Viczian AS , San Mauro D, Zuber ME ., Dev Biol. June 15, 2017; 426 (2): 219-235.
The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function. , Faunes F, Gundermann DG, Muñoz R, Bruno R, Larraín J ., Dev Biol. May 15, 2017; 425 (2): 142-151.
Connective- Tissue Growth Factor ( CTGF/CCN2) Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro. , Mendes FA, Coelho Aguiar JM, Kahn SA, Reis AH, Dubois LG, Romão LF, Ferreira LS, Chneiweiss H, Moura Neto V, Abreu JG ., PLoS One. August 4, 2015; 10 (8): e0133689.
Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. , Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, Pesquero JB, Cerqueira DM, Pillat MM, de Souza HD, Turaça LT, Abreu JG , Ulrich H., J Biol Chem. December 28, 2012; 287 (53): 44046-61.
Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells. , Gaete M , Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraín J ., Neural Dev. April 26, 2012; 7 13.
Geminin-deficient neural stem cells exhibit normal cell division and normal neurogenesis. , Schultz KM, Banisadr G, Lastra RO, McGuire T, Kessler JA, Miller RJ, McGarry TJ., PLoS One. March 9, 2011; 6 (3): e17736.
Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. , Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D ., Dev Biol. February 1, 2010; 338 (1): 50-62.
Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. , Anitha M, Joseph I, Ding X, Torre ER, Sawchuk MA, Mwangi S, Hochman S, Sitaraman SV, Anania F, Srinivasan S., Gastroenterology. May 1, 2008; 134 (5): 1424-35.
VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. , Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Bréant C, Zalc B , Carmeliet P , Alitalo K, Eichmann A, Thomas JL., Nat Neurosci. March 1, 2006; 9 (3): 340-8.
Expression of neural properties in olfactory cytokeratin-positive basal cell line. , Satoh M, Yoshida T., Brain Res Dev Brain Res. June 30, 2000; 121 (2): 219-22.
Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class. , Napier A, Yuan A, Cole GJ., J Mol Neurosci. February 1, 1999; 12 (1): 11-22.
Critical role of TrkB and brain-derived neurotrophic factor in the differentiation and survival of retinal pigment epithelium. , Liu ZZ, Zhu LQ, Eide FF ., J Neurosci. November 15, 1997; 17 (22): 8749-55.
Structural organization of the human gene ( LMNB1) encoding nuclear lamin B1. , Lin F, Worman HJ., Genomics. May 20, 1995; 27 (2): 230-6.
Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. , Hemmati-Brivanlou A , Kelly OG, Melton DA ., Cell. April 22, 1994; 77 (2): 283-95.
Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. , Lin F, Worman HJ., J Biol Chem. August 5, 1993; 268 (22): 16321-6.
A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein. , Hemmati-Brivanlou A , Mann RW, Harland RM ., Neuron. September 1, 1992; 9 (3): 417-28.