Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (86) GO Terms (3) Nucleotides (108) Proteins (51) Interactants (216) Wiki
XB-GENEPAGE-484206

Papers associated with vsig1



Limit to papers also referencing gene:
1 paper(s) referencing morpholinos

Results 1 - 50 of 85 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Synthesis, Activity, and Application of Fluorescent Analogs of [D1G, Δ14Q]LvIC Targeting α6β4 Nicotinic Acetylcholine Receptor., Pei S, Xu C, Tan Y, Wang M, Yu J, Zhangsun D, Zhu X, Luo S., Bioconjug Chem. December 20, 2023; 34 (12): 2194-2204.


Fluorescently Labeled α-Conotoxin TxID, a New Probe for α3β4 Neuronal Nicotinic Acetylcholine Receptors., Huang M, Zhu X, Yang Y, Tan Y, Luo S, Zhangsun D., Mar Drugs. August 12, 2022; 20 (8):


A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy., Wang L, Wu X, Zhu X, Zhangsun D, Wu Y, Luo S., Mar Drugs. February 17, 2022; 20 (2):


Alkaloid ligands enable function of homomeric human α10 nicotinic acetylcholine receptors., Hone AJ, McIntosh JM., Front Pharmacol. January 1, 2022; 13 981760.   


Design, Synthesis, and Activity of an α-Conotoxin LtIA Fluorescent Analogue., Yang Y, Tan Y, Zhangsun D, Zhu X, Luo S., ACS Chem Neurosci. October 6, 2021; 12 (19): 3662-3671.


Characterization of an α 4/7-Conotoxin LvIF from Conus lividus That Selectively Blocks α3β2 Nicotinic Acetylcholine Receptor., Guo M, Yu J, Zhu X, Zhangsun D, Luo S., Mar Drugs. July 17, 2021; 19 (7):


Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor., Ning J, Ren J, Xiong Y, Wu Y, Zhangsun M, Zhangsun D, Zhu X, Luo S., Toxins (Basel). October 16, 2019; 11 (10):   


α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors., van Hout M, Valdes A, Christensen SB, Tran PT, Watkins M, Gajewiak J, Jensen AA, Olivera BM, McIntosh JM., Neuropharmacology. October 1, 2019; 157 107691.


αD-Conotoxins in Species of the Eastern Pacific: The Case of Conus princeps from Mexico., Hernández-Sámano AC, Falcón A, Zamudio F, Batista CVF, Michel-Morfín JE, Landa-Jaime V, López-Vera E, Jeziorski MC, Aguilar MB., Toxins (Basel). July 12, 2019; 11 (7):   


Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states., Moldenhauer H, Díaz-Franulic I, Poblete H, Naranjo D., Elife. July 4, 2019; 8   


Effect of Methionine Oxidation and Substitution of α-Conotoxin TxID on α3β4 Nicotinic Acetylcholine Receptor., Ren J, Li R, Ning J, Zhu X, Zhangsun D, Wu Y, Luo S., Mar Drugs. June 20, 2018; 16 (6):   


Cloning, Synthesis and Functional Characterization of a Novel α-Conotoxin Lt1.3., Chen J, Liang L, Ning H, Cai F, Liu Z, Zhang L, Zhou L, Dai Q., Mar Drugs. March 31, 2018; 16 (4):   


Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel., Zhang K, Zhao Z, Lan L, Wei X, Wang L, Liu X, Yan H, Zheng J., Front Pharmacol. May 26, 2017; 8 302.   


Mutations underlying Episodic Ataxia type-1 antagonize Kv1.1 RNA editing., Ferrick-Kiddie EA, Rosenthal JJ, Ayers GD, Emeson RB., Sci Rep. February 20, 2017; 7 41095.   


Exosomal GAPDH from Proximal Tubule Cells Regulate ENaC Activity., Jella KK, Yu L, Yue Q, Friedman D, Duke BJ, Alli AA., PLoS One. November 1, 2016; 11 (11): e0165763.   


β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel., Castillo JP, Sánchez-Rodríguez JE, Hyde HC, Zaelzer CA, Aguayo D, Sepúlveda RV, Luk LY, Kent SB, Gonzalez-Nilo FD, Bezanilla F, Latorre R., Proc Natl Acad Sci U S A. June 7, 2016; 113 (23): E3231-9.   


Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination., He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, Clavairoly A, Frah M, Wang H, He X, Hmidan H, Jones BV, Witte D, Zalc B, Zhou X, Choo DI, Martin DM, Parras C, Lu QR., Nat Neurosci. May 1, 2016; 19 (5): 678-89.   


A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype., Li L, Liu N, Ding R, Wang S, Liu Z, Li H, Zheng X, Dai Q., Acta Biochim Biophys Sin (Shanghai). December 1, 2015; 47 (12): 1023-8.


α-Conotoxins Identify the α3β4* Subtype as the Predominant Nicotinic Acetylcholine Receptor Expressed in Human Adrenal Chromaffin Cells., Hone AJ, McIntosh JM, Azam L, Lindstrom J, Lucero L, Whiteaker P, Passas J, Blázquez J, Albillos A., Mol Pharmacol. November 1, 2015; 88 (5): 881-93.


Key residues in the nicotinic acetylcholine receptor β2 subunit contribute to α-conotoxin LvIA binding., Zhangsun D, Zhu X, Wu Y, Hu Y, Kaas Q, Craik DJ, McIntosh JM, Luo S., J Biol Chem. April 10, 2015; 290 (15): 9855-62.


6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor., Kasheverov IE, Shelukhina IV, Kudryavtsev DS, Makarieva TN, Spirova EN, Guzii AG, Stonik VA, Tsetlin VI., Mar Drugs. March 12, 2015; 13 (3): 1255-66.   


A novel α4/7-conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors., Luo S, Zhangsun D, Schroeder CI, Zhu X, Hu Y, Wu Y, Weltzin MM, Eberhard S, Kaas Q, Craik DJ, McIntosh JM, Whiteaker P., FASEB J. April 1, 2014; 28 (4): 1842-53.


Influence of disulfide connectivity on structure and bioactivity of α-conotoxin TxIA., Wu Y, Wu X, Yu J, Zhu X, Zhangsun D, Luo S., Molecules. January 15, 2014; 19 (1): 966-79.   


Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels., Scholl ES, Pirone A, Cox DH, Duncan RK, Jacob MH., Channels (Austin). January 1, 2014; 8 (1): 62-75.   


Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3β4 nicotinic acetylcholine receptors., Luo S, Zhangsun D, Zhu X, Wu Y, Hu Y, Christensen S, Harvey PJ, Akcan M, Craik DJ, McIntosh JM., J Med Chem. December 12, 2013; 56 (23): 9655-63.


Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels., Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B., J Gen Physiol. August 1, 2013; 142 (2): 101-12.   


Regulation of G-protein signaling via Gnas is required to regulate proximal tubular growth in the Xenopus pronephros., Zhang B, Romaker D, Ferrell N, Wessely O., Dev Biol. April 1, 2013; 376 (1): 31-42.   


Characterization of a novel α-conotoxin from conus textile that selectively targets α6/α3β2β3 nicotinic acetylcholine receptors., Luo S, Zhangsun D, Wu Y, Zhu X, Hu Y, McIntyre M, Christensen S, Akcan M, Craik DJ, McIntosh JM., J Biol Chem. January 11, 2013; 288 (2): 894-902.


JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets., Naik MU, Stalker TJ, Brass LF, Naik UP., Blood. April 5, 2012; 119 (14): 3352-60.


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J, Vázquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP., J Biol Chem. August 26, 2011; 286 (34): 30171-80.   


Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine., Tang QY, Zhang Z, Xia XM, Lingle CJ., Channels (Austin). January 1, 2010; 4 (1): 22-41.   


Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+) channels., Lee SY, Banerjee A, MacKinnon R., PLoS Biol. March 3, 2009; 7 (3): e47.   


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M, Osumi N., BMC Dev Biol. June 23, 2008; 8 87.   


Neurite outgrowth and in vivo sensory innervation mediated by a Ca(V)2.2-laminin beta 2 stop signal., Sann SB, Xu L, Nishimune H, Sanes JR, Spitzer NC., J Neurosci. March 5, 2008; 28 (10): 2366-74.   


Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block., Carvacho I, Gonzalez W, Torres YP, Brauchi S, Alvarez O, Gonzalez-Nilo FD, Latorre R., J Gen Physiol. February 1, 2008; 131 (2): 147-61.   


Docking of mu-conotoxin GIIIA in the sodium channel outer vestibule., Choudhary G, Aliste MP, Tieleman DP, French RJ, Dudley SC., Channels (Austin). January 1, 2007; 1 (5): 344-52.


A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels., Dougherty K, Covarrubias M., J Gen Physiol. December 1, 2006; 128 (6): 745-53.   


Aquaporin-11: a channel protein lacking apparent transport function expressed in brain., Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P., BMC Biochem. May 1, 2006; 7 14.   


Synthesis of fluorescent analogs of alpha-conotoxin MII., Vishwanath VA, McIntosh JM., Bioconjug Chem. January 1, 2006; 17 (6): 1612-7.


Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII., Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ., Proc Natl Acad Sci U S A. September 27, 2005; 102 (39): 13767-72.


Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant., Celie PH, Kasheverov IE, Mordvintsev DY, Hogg RC, van Nierop P, van Elk R, van Rossum-Fikkert SE, Zhmak MN, Bertrand D, Tsetlin V, Sixma TK, Smit AB., Nat Struct Mol Biol. July 1, 2005; 12 (7): 582-8.


Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity., Eguchi J, Wada J, Hida K, Zhang H, Matsuoka T, Baba M, Hashimoto I, Shikata K, Ogawa N, Makino H., Biochem J. April 15, 2005; 387 (Pt 2): 343-53.


Immunoglobulin superfamily receptors in protochordates: before RAG time., Du Pasquier L, Zucchetti I, De Santis R., Immunol Rev. April 1, 2004; 198 233-48.


[Evolutionary development of the immunoglobulins super family]., Galaktionov VG., Izv Akad Nauk Ser Biol. January 1, 2004; (2): 133-45.


Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex., Chen H, Kim LA, Rajan S, Xu S, Goldstein SA., Neuron. September 25, 2003; 40 (1): 15-23.


A molecule bearing an immunoglobulin-like V region of the CTX subfamily in amphioxus., Sato A, Mayer WE, Klein J., Immunogenetics. September 1, 2003; 55 (6): 423-7.


Characterization of the functional subunit combination of nicotinic acetylcholine receptors in bovine adrenal chromaffin cells., Tachikawa E, Mizuma K, Kudo K, Kashimoto T, Yamato S, Ohta S., Neurosci Lett. October 26, 2001; 312 (3): 161-4.


In vitro thymocyte differentiation in MHC class I-negative Xenopus larvae., Robert J, Sung M, Cohen N., Dev Comp Immunol. May 1, 2001; 25 (4): 323-36.


Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics., Sunami A, Glaaser IW, Fozzard HA., Mol Pharmacol. April 1, 2001; 59 (4): 684-91.


Calcium channel isoforms underlying synaptic transmission at embryonic Xenopus neuromuscular junctions., Thaler C, Li W, Brehm P., J Neurosci. January 15, 2001; 21 (2): 412-22.

Page(s): 1 2 Next