Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (30) GO Terms (14) Nucleotides (119) Proteins (50) Interactants (681) Wiki
XB-GENEPAGE-488066

Papers associated with sox7



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cloning and characterization of Xenopus laevis xSox7 cDNA., Shiozawa M, Hiraoka Y, Komatsu N, Ogawa M, Sakai Y, Aiso S., Biochim Biophys Acta. November 11, 1996; 1309 (1-2): 73-6.


Molecular cloning and characterization of human SOX17., Katoh M., Int J Mol Med. February 1, 2002; 9 (2): 153-7.


Expression of human SOX18 in normal tissues and tumors., Saitoh T, Katoh M., Int J Mol Med. September 1, 2002; 10 (3): 339-44.


The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation., Zhang C, Basta T, Jensen ED, Klymkowsky MW., Development. December 1, 2003; 130 (23): 5609-24.  


Embryonic expression of Xenopus laevis SOX7., Fawcett SR, Klymkowsky MW., Gene Expr Patterns. January 1, 2004; 4 (1): 29-33.          


SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus., Zhang C, Basta T, Fawcett SR, Klymkowsky MW., Dev Biol. February 15, 2005; 278 (2): 526-41.    


SOX7 and SOX18 are essential for cardiogenesis in Xenopus., Zhang C, Basta T, Klymkowsky MW., Dev Dyn. December 1, 2005; 234 (4): 878-91.                    


The Sox axis, Nodal signaling, and germ layer specification., Zhang C, Klymkowsky MW., Differentiation. July 1, 2007; 75 (6): 536-45.          


Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells., Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM., Mol Cell Biol. November 1, 2007; 27 (22): 7802-15.                


A functional screen for genes involved in Xenopus pronephros development., Kyuno J, Massé K, Jones EA., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins., Tonge D, Chan K, Zhu N, Panjwani A, Arno M, Lynham S, Ward M, Snape A, Pizzey J., J Cell Sci. August 1, 2008; 121 (Pt 15): 2565-77.                        


Molecular cloning and characterization of the germ cell-related nuclear orphan receptor in chickens., Lee SI, Kim JK, Park HJ, Jang HJ, Lee HC, Min T, Song G, Han JY., Mol Reprod Dev. March 1, 2010; 77 (3): 273-84.


Analyzing the function of a hox gene: an evolutionary approach., Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q., BMC Syst Biol. January 8, 2014; 8 3.                  


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ, Bahn M, Kim YH, Shin JY, Cheong SW, Ju BG, Kim WS, Yeo CY., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species., Claußen M, Lingner T, Pommerenke C, Opitz L, Salinas G, Pieler T., Mol Biol Cell. November 5, 2015; .            


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


The Sox transcriptional factors: Functions during intestinal development in vertebrates., Fu L, Shi YB., Semin Cell Dev Biol. March 1, 2017; 63 58-67.        


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM, Paraiso KD, Blitz IL, Cho KWY., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome., Butler AM, Owens DA, Wang L, King ML., Development. January 8, 2018; 145 (1):                                                 


Genome-wide transcriptomics analysis of genes regulated by GATA4, 5 and 6 during cardiomyogenesis in Xenopus laevis., Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S., Data Brief. January 17, 2018; 17 559-563.  


Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis., Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S., Dev Biol. February 1, 2018; 434 (1): 108-120.                  


Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan., Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M., Sci Rep. May 29, 2018; 8 (1): 8315.                


Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation., Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.                          


Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription., Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J., Nat Commun. July 13, 2020; 11 (1): 3491.              


Uncovering the mesendoderm gene regulatory network through multi-omic data integration., Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY., Cell Rep. February 15, 2022; 38 (7): 110364.                            


Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y, Ma L, Guo Q, E W, Fang X, Yang L, Ruan F, Wang J, Zhang P, Sun Z, Chen H, Lin Z, Wang X, Wang X, Sun H, Fang X, Zhou Y, Chen M, Shen W, Guo G, Han X., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        


Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3., Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF., Dev Biol. January 1, 2023; 493 17-28.


Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish., Divyanshi, Yang J., Mol Reprod Dev. December 21, 2023;         

???pagination.result.page??? 1