Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (34) GO Terms (3) Nucleotides (39) Proteins (17) Interactants (50) Wiki
XB-GENEPAGE-5943312

Papers associated with slc2a4



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Cloning, characterization, and expression of glucose transporter 2 in the freeze-tolerant wood frog, Rana sylvatica., Rosendale AJ, Philip BN, Lee RE, Costanzo JP., Biochim Biophys Acta. June 1, 2014; 1840 (6): 1701-11.              


FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells., Kitaoka S, Morielli AD, Zhao FQ., PLoS One. June 4, 2013; 8 (6): e68475.              


Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells., Chiu TT, Patel N, Shaw AE, Bamburg JR, Klip A., Mol Biol Cell. October 15, 2010; 21 (20): 3529-39.                


Regulation of renal tubular glucose reabsorption by Akt2/PKBβ., Kempe DS, Siraskar G, Fröhlich H, Umbach AT, Stübs M, Weiss F, Ackermann TF, Völkl H, Birnbaum MJ, Pearce D, Föller M, Lang F., Am J Physiol Renal Physiol. May 1, 2010; 298 (5): F1113-7.


Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues., Slavic K, Derbyshire ET, Naftalin RJ, Krishna S, Staines HM., Mol Biochem Parasitol. November 1, 2009; 168 (1): 113-6.  


The orally active antihyperglycemic drug beta-guanidinopropionic acid is transported by the human proton-coupled amino acid transporter hPAT1., Metzner L, Dorn M, Markwardt F, Brandsch M., Mol Pharm. January 1, 2009; 6 (3): 1006-11.


Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1., Shojaiefard M, Strutz-Seebohm N, Tavaré JM, Seebohm G, Lang F., Biochem Biophys Res Commun. August 10, 2007; 359 (4): 843-7.


Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4., Jeyaraj S, Boehmer C, Lang F, Palmada M., Biochem Biophys Res Commun. May 11, 2007; 356 (3): 629-35.


PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8., Strutz-Seebohm N, Shojaiefard M, Christie D, Tavare J, Seebohm G, Lang F., Cell Physiol Biochem. January 1, 2007; 20 (6): 729-34.


SGK1 kinase upregulates GLUT1 activity and plasma membrane expression., Palmada M, Boehmer C, Akel A, Rajamanickam J, Jeyaraj S, Keller K, Lang F., Diabetes. February 1, 2006; 55 (2): 421-7.


A structural basis for the acute effects of HIV protease inhibitors on GLUT4 intrinsic activity., Hertel J, Struthers H, Horj CB, Hruz PW., J Biol Chem. December 31, 2004; 279 (53): 55147-52.


Functional characterization of an insulin-responsive glucose transporter (GLUT4) from fish adipose tissue., Capilla E, Díaz M, Albalat A, Navarro I, Pessin JE, Keller K, Planas JV., Am J Physiol Endocrinol Metab. August 1, 2004; 287 (2): E348-57.


GLUT2 is a high affinity glucosamine transporter., Uldry M, Ibberson M, Hosokawa M, Thorens B., FEBS Lett. July 31, 2002; 524 (1-3): 199-203.


Small GTP-binding protein TC10 differentially regulates two distinct populations of filamentous actin in 3T3L1 adipocytes., Kanzaki M, Watson RT, Hou JC, Stamnes M, Saltiel AR, Pessin JE., Mol Biol Cell. July 1, 2002; 13 (7): 2334-46.


Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations., Murata H, Hruz PW, Mueckler M., AIDS. April 12, 2002; 16 (6): 859-63.


Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes., Kanzaki M, Watson RT, Khan AH, Pessin JE., J Biol Chem. December 28, 2001; 276 (52): 49331-6.


The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function., Monden I, Olsowski A, Krause G, Keller K., Biol Chem. November 1, 2001; 382 (11): 1551-8.


Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes., Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M., J Biol Chem. September 8, 2000; 275 (36): 28246-53.


The mechanism of insulin resistance caused by HIV protease inhibitor therapy., Murata H, Hruz PW, Mueckler M., J Biol Chem. July 7, 2000; 275 (27): 20251-4.


Constitutively active mitogen-activated protein kinase kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes., Yamamoto Y, Yoshimasa Y, Koh M, Suga J, Masuzaki H, Ogawa Y, Hosoda K, Nishimura H, Watanabe Y, Inoue G, Nakao K., Diabetes. March 1, 2000; 49 (3): 332-9.


GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues., Ibberson M, Uldry M, Thorens B., J Biol Chem. February 18, 2000; 275 (7): 4607-12.


Metformin interaction with insulin-regulated glucose uptake, using the Xenopus laevis oocyte model expressing the mammalian transporter GLUT4., Detaille D, Wiernsperger N, Devos P., Eur J Pharmacol. July 14, 1999; 377 (1): 127-36.


Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid., Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M., J Biol Chem. July 25, 1997; 272 (30): 18982-9.


Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes., Mora S, Monden I, Zorzano A, Keller K., Biochem J. June 1, 1997; 324 ( Pt 2) 455-9.


C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4., Dauterive R, Laroux S, Bunn RC, Chaisson A, Sanson T, Reed BC., J Biol Chem. May 10, 1996; 271 (19): 11414-21.


Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes., Mora S, Kaliman P, Chillarón J, Testar X, Palacín M, Zorzano A., Biochem J. October 1, 1995; 311 ( Pt 1) 59-65.


Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes., Due AD, Qu ZC, Thomas JM, Buchs A, Powers AC, May JM., Biochemistry. April 25, 1995; 34 (16): 5462-71.


Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms., Hresko RC, Murata H, Marshall BA, Mueckler M., J Biol Chem. December 23, 1994; 269 (51): 32110-9.


Evidence that facilitative glucose transporters may fold as beta-barrels., Fischbarg J, Cheung M, Czegledy F, Li J, Iserovich P, Kuang K, Hubbard J, Garner M, Rosen OM, Golde DW., Proc Natl Acad Sci U S A. December 15, 1993; 90 (24): 11658-62.


Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes., Marshall BA, Murata H, Hresko RC, Mueckler M., J Biol Chem. December 15, 1993; 268 (35): 26193-9.


Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes., Nishimura H, Pallardo FV, Seidner GA, Vannucci S, Simpson IA, Birnbaum MJ., J Biol Chem. April 25, 1993; 268 (12): 8514-20.


Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins., Burant CF, Bell GI., Biochemistry. October 27, 1992; 31 (42): 10414-20.


Different mammalian facilitative glucose transporters expressed in Xenopus oocytes., Keller K, Mueckler M., Biomed Biochim Acta. January 1, 1990; 49 (12): 1201-3.

???pagination.result.page??? 1