Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (40) GO Terms (12) Nucleotides (167) Proteins (59) Interactants (32) Wiki
XB-GENEPAGE-5957240

Papers associated with clcn5



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease., Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ., J Biol Chem. December 29, 1995; 270 (52): 31172-7.


A common molecular basis for three inherited kidney stone diseases., Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV., Nature. February 1, 1996; 379 (6564): 445-9.


Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5)., Lloyd SE, Pearce SH, Günther W, Kawaguchi H, Igarashi T, Jentsch TJ, Thakker RV., J Clin Invest. March 1, 1997; 99 (5): 967-74.


Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders., Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV., Hum Mol Genet. August 1, 1997; 6 (8): 1233-9.


Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria., Morimoto T, Uchida S, Sakamoto H, Kondo Y, Hanamizu H, Fukui M, Tomino Y, Nagano N, Sasaki S, Marumo F., J Am Soc Nephrol. May 1, 1998; 9 (5): 811-8.


Functional characterization of renal chloride channel, CLCN5, mutations associated with Dent'sJapan disease., Igarashi T, Günther W, Sekine T, Inatomi J, Shiraga H, Takahashi S, Suzuki J, Tsuru N, Yanagihara T, Shimazu M, Jentsch TJ, Thakker RV., Kidney Int. December 1, 1998; 54 (6): 1850-6.


Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents., Friedrich T, Breiderhoff T, Jentsch TJ., J Biol Chem. January 8, 1999; 274 (2): 896-902.


Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant., Miyazaki H, Uchida S, Takei Y, Hirano T, Marumo F, Sasaki S., Biochem Biophys Res Commun. February 5, 1999; 255 (1): 175-81.


Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH., Mo L, Hellmich HL, Fong P, Wood T, Embesi J, Wills NK., J Membr Biol. April 1, 1999; 168 (3): 253-64.


Characterization of renal chloride channel (CLCN5) mutations in Dent's disease., Yamamoto K, Cox JPDT, Friedrich T, Christie PT, Bald M, Houtman PN, Lapsley MJ, Patzer L, Tsimaratos M, Van't Hoff WG, Yamaoka K, Jentsch TJ, Thakker RV., J Am Soc Nephrol. August 1, 2000; 11 (8): 1460-1468.


Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives., Pusch M, Liantonio A, Bertorello L, Accardi A, De Luca A, Pierno S, Tortorella V, Camerino DC., Mol Pharmacol. September 1, 2000; 58 (3): 498-507.


Expression and regulation of ClC-5 chloride channels: effects of antisense and oxidants., Weng TX, Mo L, Hellmich HL, Yu AS, Wood T, Wills NK., Am J Physiol Cell Physiol. June 1, 2001; 280 (6): C1511-20.


Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels., Schmieder S, Lindenthal S, Ehrenfeld J., Biochim Biophys Acta. November 13, 2002; 1566 (1-2): 55-66.          


A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity., Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S., Kidney Int. January 1, 2004; 65 (1): 190-7.


ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC)., Mo L, Wills NK., J Membr Biol. November 1, 2004; 202 (1): 21-37.


Novel outwardly rectifying anion conductance in Xenopus oocytes., Reyes JP, Hernandez-Carballo CY, Pérez-Cornejo P, Meza U, Espinosa-Tanguma R, Arreola J., Pflugers Arch. December 1, 2004; 449 (3): 271-7.


Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells., Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P., J Biol Chem. December 31, 2004; 279 (53): 54996-5007.


Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization., Ludwig M, Doroszewicz J, Seyberth HW, Bökenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S., Hum Genet. July 1, 2005; 117 (2-3): 228-37.


Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins., Scheel O, Zdebik AA, Lourdel S, Jentsch TJ., Nature. July 21, 2005; 436 (7049): 424-7.


Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5., Meyer S, Savaresi S, Forster IC, Dutzler R., Nat Struct Mol Biol. January 1, 2007; 14 (1): 60-7.


Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease., Tanuma A, Sato H, Takeda T, Hosojima M, Obayashi H, Hama H, Iino N, Hosaka K, Kaseda R, Imai N, Ueno M, Yamazaki M, Sakimura K, Gejyo F, Saito A., Nephron Physiol. January 1, 2007; 107 (4): p87-97.


N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane., Schmieder S, Bogliolo S, Ehrenfeld J., J Cell Physiol. February 1, 2007; 210 (2): 479-88.


Insights into the ClC-4 transport mechanism from studies of Zn2+ inhibition., Osteen JD, Mindell JA., Biophys J. November 15, 2008; 95 (10): 4668-75.


Conversion of the 2 Cl(-)/1 H+ antiporter ClC-5 in a NO3(-)/H+ antiporter by a single point mutation., Zifarelli G, Pusch M., EMBO J. February 4, 2009; 28 (3): 175-82.


Residues important for nitrate/proton coupling in plant and mammalian CLC transporters., Bergsdorf EY, Zdebik AA, Jentsch TJ., J Biol Chem. April 24, 2009; 284 (17): 11184-93.


Novel CLCN5 mutations in patients with Dent's disease result in altered ion currents or impaired exchanger processing., Grand T, Mordasini D, L'Hoste S, Pennaforte T, Genete M, Biyeyeme MJ, Vargas-Poussou R, Blanchard A, Teulon J, Lourdel S., Kidney Int. November 1, 2009; 76 (9): 999-1005.


Proton block of the CLC-5 Cl-/H+ exchanger., Picollo A, Malvezzi M, Accardi A., J Gen Physiol. June 1, 2010; 135 (6): 653-9.        


Sorting motifs of the endosomal/lysosomal CLC chloride transporters., Stauber T, Jentsch TJ., J Biol Chem. November 5, 2010; 285 (45): 34537-48.


ATP induces conformational changes in the carboxyl-terminal region of ClC-5., Wellhauser L, Luna-Chavez C, D'Antonio C, Tainer J, Bear CE., J Biol Chem. February 25, 2011; 286 (8): 6733-41.


Heterogeneity in the processing of CLCN5 mutants related to Dent disease., Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S., Hum Mutat. April 1, 2011; 32 (4): 476-83.


Binding of ATP to the CBS domains in the C-terminal region of CLC-1., Tseng PY, Yu WP, Liu HY, Zhang XD, Zou X, Chen TY., J Gen Physiol. April 1, 2011; 137 (4): 357-68.              


Extracellular determinants of anion discrimination of the Cl-/H+ antiporter protein CLC-5., De Stefano S, Pusch M, Zifarelli G., J Biol Chem. December 23, 2011; 286 (51): 44134-44144.                


GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit., Jeworutzki E, López-Hernández T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Müller CS, Schulte U, Nunes V, Martínez A, Jentsch TJ, Gasull X, Pusch M, Estévez R., Neuron. March 8, 2012; 73 (5): 951-61.                


Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel., Bennetts B, Yu Y, Chen TY, Parker MW., J Biol Chem. July 27, 2012; 287 (31): 25808-20.


Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes., Ochoa-de la Paz LD, Espino-Saldaña AE, Arellano-Ostoa R, Reyes JP, Miledi R, Martinez-Torres A., Biochim Biophys Acta. August 1, 2013; 1828 (8): 1743-53.


A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter., De Stefano S, Pusch M, Zifarelli G., J Physiol. December 1, 2013; 591 (23): 5879-93.                    


GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels., Jeworutzki E, Lagostena L, Elorza-Vidal X, López-Hernández T, Estévez R, Pusch M., Biophys J. September 2, 2014; 107 (5): 1105-1116.                


A novel CLCN5 pathogenic mutation supports Dent disease with normal endosomal acidification., Bignon Y, Alekov A, Frachon N, Lahuna O, Jean-Baptiste Doh-Egueli C, Deschênes G, Vargas-Poussou R, Lourdel S., Hum Mutat. August 1, 2018; 39 (8): 1139-1149.


Cl- and H+ coupling properties and subcellular localizations of wildtype and disease-associated variants of the voltage-gated Cl-/H+ exchanger ClC-5., Chang MH, Brown MR, Liu Y, Gainullin VG, Harris PC, Romero MF, Lieske JC., J Biol Chem. February 7, 2020; 295 (6): 1464-1473.


Diversity of functional alterations of the ClC-5 exchanger in the region of the proton glutamate in patients with Dent disease 1., Sakhi I, Bignon Y, Frachon N, Hureaux M, Arévalo B, González W, Vargas-Poussou R, Lourdel S., Hum Mutat. May 1, 2021; 42 (5): 537-550.

???pagination.result.page??? 1