Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (34) GO Terms (17) Nucleotides (236) Proteins (50) Interactants (682) Wiki
XB-GENEPAGE-919852

Papers associated with cxcl12



???displayGene.coCitedPapers???
7 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene., Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T., Genomics. August 10, 1995; 28 (3): 495-500.


Nerve growth cone guidance mediated by G protein-coupled receptors., Xiang Y, Li Y, Zhang Z, Cui K, Wang S, Yuan XB, Wu CP, Poo MM, Duan S., Nat Neurosci. September 1, 2002; 5 (9): 843-8.


The mode and molecular mechanisms of the migration of presumptive PGC in the endoderm cell mass of Xenopus embryos., Nishiumi F, Komiya T, Ikenishi K., Dev Growth Differ. January 1, 2005; 47 (1): 37-48.                  


SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation., Fukui A, Goto T, Kitamoto J, Homma M, Asashima M., Biochem Biophys Res Commun. March 9, 2007; 354 (2): 472-7.        


The role of hERG1 K+ channels and a functional link between hERG1 K+ channels and SDF-1 in acute leukemic cell migration., Li H, Du YM, Guo L, Jie S, Zhang S, Du W, Chen X, Liu W, Fan L, Zhu J, Zou A, Huang S., Exp Cell Res. August 1, 2009; 315 (13): 2256-64.


Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis., Takeuchi T, Tanigawa Y, Minamide R, Ikenishi K, Komiya T., Mech Dev. January 1, 2010; 127 (1-2): 146-58.      


Collective chemotaxis requires contact-dependent cell polarity., Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R., Dev Cell. July 20, 2010; 19 (1): 39-53.                


CXCL14 expression during chick embryonic development., Gordon CT, Wade C, Brinas I, Farlie PG., Int J Dev Biol. January 1, 2011; 55 (3): 335-40.


Chemokine ligand Xenopus CXCLC (XCXCLC) regulates cell movements during early morphogenesis., Goto T, Asashima M., Dev Growth Differ. December 1, 2011; 53 (9): 971-81.            


Complement fragment C3a controls mutual cell attraction during collective cell migration., Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R., Dev Cell. December 13, 2011; 21 (6): 1026-37.                


Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1., Bonnard C, Strobl AC, Shboul M, Lee H, Merriman B, Nelson SF, Ababneh OH, Uz E, Güran T, Kayserili H, Hamamy H, Reversade B., Nat Genet. May 13, 2012; 44 (6): 709-13.    


Expression of xSDF-1α, xCXCR4, and xCXCR7 during gastrulation in Xenopus laevis., Mishra SK, Nagata T, Furusawa K, Sasaki A, Fukui A., Int J Dev Biol. January 1, 2013; 57 (1): 95-100.                


Characterization of CXC-type chemokine molecules in early Xenopus laevis development., Goto T, Michiue T, Ito Y, Asashima M., Int J Dev Biol. January 1, 2013; 57 (1): 41-7.          


The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition., Barriga EH, Maxwell PH, Reyes AE, Mayor R., J Cell Biol. May 27, 2013; 201 (5): 759-76.                  


Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration., Fuentealba J, Toro-Tapia G, Arriagada C, Riquelme L, Beyer A, Henriquez JP, Caprile T, Mayor R, Marcellini S, Hinrichs MV, Olate J, Torrejón M., Dev Biol. June 15, 2013; 378 (2): 74-82.          


Baclofen and other GABAB receptor agents are allosteric modulators of the CXCL12 chemokine receptor CXCR4., Guyon A, Kussrow A, Olmsted IR, Sandoz G, Bornhop DJ, Nahon JL., J Neurosci. July 10, 2013; 33 (28): 11643-54.


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


C-terminal engineering of CXCL12 and CCL5 chemokines: functional characterization by electrophysiological recordings., Picciocchi A, Siaučiūnaiteė-Gaubard L, Petit-Hartlein I, Sadir R, Revilloud J, Caro L, Vivaudou M, Fieschi F, Moreau C, Vivès C., PLoS One. January 17, 2014; 9 (1): e87394.            


The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis., Leal MA, Fickel SR, Sabillo A, Ramirez J, Vergara HM, Nave C, Saw D, Domingo CR., Dev Dyn. April 1, 2014; 243 (4): 509-26.                        


RARβ2 is required for vertebrate somitogenesis., Janesick A, Tang W, Nguyen TTL, Blumberg B., Development. June 1, 2017; 144 (11): 1997-2008.                                              


Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin., Cousin H., Mech Dev. December 1, 2017; 148 79-88.    


Using Zebrafish to Study Collective Cell Migration in Development and Disease., Olson HM, Nechiporuk AV., Front Cell Dev Biol. January 1, 2018; 6 83.            


SIVcol Nef counteracts SERINC5 by promoting its proteasomal degradation but does not efficiently enhance HIV-1 replication in human CD4+ T cells and lymphoid tissue., Kmiec D, Akbil B, Ananth S, Hotter D, Sparrer KMJ, Stürzel CM, Trautz B, Ayouba A, Peeters M, Yao Z, Stagljar I, Passos V, Zillinger T, Goffinet C, Sauter D, Fackler OT, Kirchhoff F., PLoS Pathog. August 20, 2018; 14 (8): e1007269.                    


Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis., Shellard A, Szabó A, Trepat X, Mayor R., Science. October 19, 2018; 362 (6412): 339-343.


In vivo topology converts competition for cell-matrix adhesion into directional migration., Bajanca F, Gouignard N, Colle C, Parsons M, Mayor R, Theveneau E., Nat Commun. April 3, 2019; 10 (1): 1518.                    


Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver., Yaparla A, Reeves P, Grayfer L., Front Immunol. April 4, 2019; 10 3015.              


In vivo Neural Crest Cell Migration Is Controlled by "Mixotaxis"., Barriga EH, Theveneau E., Front Physiol. January 1, 2020; 11 586432.    


Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections., Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L., Front Immunol. January 1, 2021; 12 737403.                


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B, Weill L, Chanoine C., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


The Roles of Amphibian (Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections., Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L., Viruses. November 18, 2021; 13 (11):               


Gene Structure Analysis of Chemokines and Their Receptors in Allotetraploid Frog, Xenopus laevis., Fukui A, Matsunami M., Front Genet. November 25, 2021; 12 787979.            


Collective durotaxis along a self-generated stiffness gradient in vivo., Shellard A, Mayor R., Nature. December 1, 2021; 600 (7890): 690-694.


Amphibian myelopoiesis., Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L., Dev Comp Immunol. September 1, 2023; 146 104701.

???pagination.result.page??? 1