Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (156) GO Terms (14) Nucleotides (355) Proteins (94) Interactants (577) Wiki
XB-GENEPAGE-950934

Papers associated with pam



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Pharmacological profile of a 17β-heteroaryl-substituted neuroactive steroid., Hogenkamp DJ, Tran MB, Yoshimura RF, Johnstone TB, Kanner R, Gee KW., Psychopharmacology (Berl). September 1, 2014; 231 (17): 3517-24.


The minimal pharmacophore for silent agonism of the α7 nicotinic acetylcholine receptor., Papke RL, Chojnacka K, Horenstein NA., J Pharmacol Exp Ther. September 1, 2014; 350 (3): 665-80.


Poly(A)-tail profiling reveals an embryonic switch in translational control., Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP., Nature. April 3, 2014; 508 (7494): 66-71.        


Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis., Guo X, Zhang T, Hu Z, Zhang Y, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y, Chen Y., Development. February 1, 2014; 141 (3): 707-14.              


Two distinct allosteric binding sites at α4β2 nicotinic acetylcholine receptors revealed by NS206 and NS9283 give unique insights to binding activity-associated linkage at Cys-loop receptors., Olsen JA, Kastrup JS, Peters D, Gajhede M, Balle T, Ahring PK., J Biol Chem. December 13, 2013; 288 (50): 35997-6006.


Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis., Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM., Genesis. December 1, 2013; 51 (12): 835-43.            


Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system., Blitz IL, Biesinger J, Xie X, Cho KW., Genesis. December 1, 2013; 51 (12): 827-34.      


Design, synthesis, and activity of a series of arylpyrid-3-ylmethanones as type I positive allosteric modulators of α7 nicotinic acetylcholine receptors., Hogenkamp DJ, Ford-Hutchinson TA, Li WY, Whittemore ER, Yoshimura RF, Tran MB, Johnstone TB, Bascom GD, Rollins H, Lu L, Gee KW., J Med Chem. November 14, 2013; 56 (21): 8352-65.


Expeditious synthesis, enantiomeric resolution, and enantiomer functional characterization of (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4BP-TQS): an allosteric agonist-positive allosteric modulator of α7 nicotinic acetylcholine receptors., Thakur GA, Kulkarni AR, Deschamps JR, Papke RL., J Med Chem. November 14, 2013; 56 (21): 8943-7.


Control of gene expression by CRISPR-Cas systems., Bikard D, Marraffini LA., F1000Prime Rep. November 1, 2013; 5 47.      


Multiple modes of α7 nAChR noncompetitive antagonism of control agonist-evoked and allosterically enhanced currents., Peng C, Kimbrell MR, Tian C, Pack TF, Crooks PA, Fifer EK, Papke RL., Mol Pharmacol. September 1, 2013; 84 (3): 459-75.


Point-to-point ligand-receptor interactions across the subunit interface modulate the induction and stabilization of conformational states of alpha7 nAChR by benzylidene anabaseines., Isaacson MD, Horenstein NA, Stokes C, Kem WR, Papke RL., Biochem Pharmacol. March 15, 2013; 85 (6): 817-28.


A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors., Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR., Br J Pharmacol. March 1, 2013; 168 (5): 1118-32.


A series of α7 nicotinic acetylcholine receptor allosteric modulators with close chemical similarity but diverse pharmacological properties., Gill JK, Dhankher P, Sheppard TD, Sher E, Millar NS., Mol Pharmacol. May 1, 2012; 81 (5): 710-8.


[Evolutional principles of homology in regulatory genes of myogenesis]., Ozerniuk ID, Miuge NS., Izv Akad Nauk Ser Biol. January 1, 2012; (4): 383-90.


Investigation of the molecular mechanism of the α7 nicotinic acetylcholine receptor positive allosteric modulator PNU-120596 provides evidence for two distinct desensitized states., Williams DK, Wang J, Papke RL., Mol Pharmacol. December 1, 2011; 80 (6): 1013-32.


Competitive binding at a nicotinic receptor transmembrane site of two α7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization., Collins T, Young GT, Millar NS., Neuropharmacology. December 1, 2011; 61 (8): 1306-13.              


Functional characterization and high-throughput screening of positive allosteric modulators of α7 nicotinic acetylcholine receptors in IMR-32 neuroblastoma cells., Gopalakrishnan SM, Philip BM, Gronlien JH, Malysz J, Anderson DJ, Gopalakrishnan M, Warrior U, Burns DJ., Assay Drug Dev Technol. December 1, 2011; 9 (6): 635-45.


Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide., Pandya A, Yakel JL., J Mol Neurosci. September 1, 2011; 45 (1): 42-7.


Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site., Gill JK, Savolainen M, Young GT, Zwart R, Sher E, Millar NS., Proc Natl Acad Sci U S A. April 5, 2011; 108 (14): 5867-72.


In vitro pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107., Malysz J, Anderson DJ, Grønlien JH, Ji J, Bunnelle WH, Håkerud M, Thorin-Hagene K, Ween H, Helfrich R, Hu M, Gubbins E, Gopalakrishnan S, Puttfarcken PS, Briggs CA, Li J, Meyer MD, Dyhring T, Ahring PK, Nielsen EØ, Peters D, Timmermann DB, Gopalakrishnan M., J Pharmacol Exp Ther. September 1, 2010; 334 (3): 863-74.


The serendipitous origin of chordate secretin peptide family members., Cardoso JC, Vieira FA, Gomes AS, Power DM., BMC Evol Biol. May 6, 2010; 10 135.            


Comparative pharmacology and computational modelling yield insights into allosteric modulation of human alpha7 nicotinic acetylcholine receptors., Sattelle DB, Buckingham SD, Akamatsu M, Matsuda K, Pienaar IS, Pienaar I, Jones AK, Sattelle BM, Almond A, Blundell CD., Biochem Pharmacol. October 1, 2009; 78 (7): 836-43.


In vitro pharmacological characterization of a novel allosteric modulator of alpha 7 neuronal acetylcholine receptor, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), exhibiting unique pharmacological profile., Malysz J, Grønlien JH, Anderson DJ, Håkerud M, Thorin-Hagene K, Ween H, Wetterstrand C, Briggs CA, Faghih R, Bunnelle WH, Gopalakrishnan M., J Pharmacol Exp Ther. July 1, 2009; 330 (1): 257-67.


Discovery of 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744) as a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor., Faghih R, Gopalakrishnan SM, Gronlien JH, Malysz J, Briggs CA, Wetterstrand C, Ween H, Curtis MP, Sarris KA, Gfesser GA, El-Kouhen R, Robb HM, Radek RJ, Marsh KC, Bunnelle WH, Gopalakrishnan M., J Med Chem. May 28, 2009; 52 (10): 3377-84.


Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine., Papke RL, Kem WR, Soti F, López-Hernández GY, Horenstein NA., J Pharmacol Exp Ther. May 1, 2009; 329 (2): 791-807.


Molecular characterization and expression analysis of the gene coding for the porcine beta(3) integrin subunit (CD61)., Jiménez-Marín A, Yubero N, Esteso G, Moreno A, de Las Mulas JM, Morera L, Llanes D, Barbancho M, Garrido JJ., Gene. January 31, 2008; 408 (1-2): 9-17.


In vitro screening strategies for nicotinic receptor ligands., Dunlop J, Roncarati R, Jow B, Bothmann H, Lock T, Kowal D, Bowlby M, Terstappen GC., Biochem Pharmacol. October 15, 2007; 74 (8): 1172-81.


Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes., Grønlien JH, Håkerud M, Ween H, Thorin-Hagene K, Briggs CA, Gopalakrishnan M, Malysz J., Mol Pharmacol. September 1, 2007; 72 (3): 715-24.


Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia., Hwang IS, Fung ML, Liong EC, Tipoe GL, Tang F., J Gerontol A Biol Sci Med Sci. January 1, 2007; 62 (1): 41-9.


K-aggravated myotonia mutations at residue G1306 differentially alter deactivation gating of human skeletal muscle sodium channels., Groome JR, Fujimoto E, Ruben PC., Cell Mol Neurobiol. November 1, 2005; 25 (7): 1075-92.


Cleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites., Scadden AD, O'Connell MA., Nucleic Acids Res. October 27, 2005; 33 (18): 5954-64.            


The 5'-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf., Yoshida T, Ohkumo T, Ishibashi S, Yasuda K., Nucleic Acids Res. June 21, 2005; 33 (11): 3465-78.                  


Temporal and spatial expression patterns of FoxD2 during the early development of Xenopus laevis., Pohl BS, Knöchel W., Mech Dev. February 1, 2002; 111 (1-2): 181-4.              


Kinetic and stereochemical studies on novel inactivators of C-terminal amidation., Feng J, Shi J, Sirimanne SR, Mounier-Lee CE, May SW., Biochem J. September 1, 2000; 350 Pt 2 521-30.


Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation., Moore AB, May SW., Biochem J. July 1, 1999; 341 ( Pt 1) 33-40.


Pharmacological evaluation of 1-(carboxymethyl)-3,5-diphenyl-2-methylbenzene, a novel arylacetic acid with potential anti-inflammatory properties., Cutler SJ, DeWitt Blanton C, Akin DT, Steinberg FB, Moore AB, Lott JA, Price TC, May SW, Pollock SH., Inflamm Res. July 1, 1998; 47 (7): 316-24.


Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1., Champigny G, Voilley N, Waldmann R, Lazdunski M., J Biol Chem. June 19, 1998; 273 (25): 15418-22.


Pyruvate-extended amino acid derivatives as highly potent inhibitors of carboxyl-terminal peptide amidation., Mounier CE, Shi J, Sirimanne SR, Chen BH, Moore AB, Gill-Woznichak MM, Ping D, May SW., J Biol Chem. February 21, 1997; 272 (8): 5016-23.


Molecular cloning of the large subunit of glutathione synthetase from Xenopus laevis embryos., Habenicht A, Hille S, Knöchel W., Biochim Biophys Acta. September 23, 1993; 1174 (3): 295-8.      


Tissue-specific molecular diversity of amidating enzymes (peptidylglycine alpha-hydroxylating monooxygenase and peptidylhydroxyglycine N-C lyase) in Xenopus laevis., Iwasaki Y, Shimoi H, Saiki H, Nishikawa Y., Eur J Biochem. June 15, 1993; 214 (3): 811-8.


Functional expression and characterization of a Xenopus laevis peptidylglycine alpha-amidating monooxygenase, AE-II, in insect-cell culture., Suzuki K, Ohta M, Okamoto M, Nishikawa Y., Eur J Biochem. April 1, 1993; 213 (1): 93-8.


Characterization of a Xenopus laevis skin peptidylglycine alpha-hydroxylating monooxygenase expressed in insect-cell culture., Shimoi H, Kawahara T, Suzuki K, Iwasaki Y, Jeng AY, Nishikawa Y., Eur J Biochem. October 1, 1992; 209 (1): 189-94.


Purification and cDNA cloning of Xenopus laevis skin peptidylhydroxyglycine N-C lyase, catalyzing the second reaction of C-terminal alpha-amidation., Iwasaki Y, Kawahara T, Shimoi H, Suzuki K, Ghisalba O, Kangawa K, Matsuo H, Nishikawa Y., Eur J Biochem. November 1, 1991; 201 (3): 551-9.


Elucidation of amidating reaction mechanism by frog amidating enzyme, peptidylglycine alpha-hydroxylating monooxygenase, expressed in insect cell culture., Suzuki K, Shimoi H, Iwasaki Y, Kawahara T, Matsuura Y, Nishikawa Y., EMBO J. December 1, 1990; 9 (13): 4259-65.


Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase., Neville LF, Gnatt A, Loewenstein Y, Soreq H., J Neurosci Res. December 1, 1990; 27 (4): 452-60.


Cloning of cDNA encoding a new peptide C-terminal alpha-amidating enzyme having a putative membrane-spanning domain from Xenopus laevis skin., Ohsuye K, Kitano K, Wada Y, Fuchimura K, Tanaka S, Mizuno K, Matsuo H., Biochem Biophys Res Commun. February 15, 1988; 150 (3): 1275-81.


Cloning and sequence of cDNA encoding a peptide C-terminal alpha-amidating enzyme from Xenopus laevis., Mizuno K, Ohsuye K, Wada Y, Fuchimura K, Tanaka S, Matsuo H., Biochem Biophys Res Commun. October 29, 1987; 148 (2): 546-52.


Membrane currents elicited by porcine vasoactive intestinal peptide (VIP) in follicle-enclosed Xenopus oocytes., Woodward RM, Miledi R., Proc R Soc Lond B Biol Sci. September 22, 1987; 231 (1265): 489-97.


Cerulein mRNA and peptide alpha-amidation activity in the skin of Xenopus laevis: stimulation by norepinephrine., Spindel ER, Eipper BA, Zilberberg MD, Mains RE, Chin WW., Gen Comp Endocrinol. July 1, 1987; 67 (1): 67-76.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???